A Reconciled Estimate of Ice-Sheet Mass Balance

Warming and Melting Mass loss from the ice sheets of Greenland and Antarctica account for a large fraction of global sea-level rise. Part of this loss is because of the effects of warmer air temperatures, and another because of the rising ocean temperatures to which they are being exposed. Joughin et al. (p. 1172) review how ocean-ice interactions are impacting ice sheets and discuss the possible ways that exposure of floating ice shelves and grounded ice margins are subject to the influences of warming ocean currents. Estimates of the mass balance of the ice sheets of Greenland and Antarctica have differed greatly—in some cases, not even agreeing about whether there is a net loss or a net gain—making it more difficult to project accurately future sea-level change. Shepherd et al. (p. 1183) combined data sets produced by satellite altimetry, interferometry, and gravimetry to construct a more robust ice-sheet mass balance for the period between 1992 and 2011. All major regions of the two ice sheets appear to be losing mass, except for East Antarctica. All told, mass loss from the polar ice sheets is contributing about 0.6 millimeters per year (roughly 20% of the total) to the current rate of global sea-level rise. The mass balance of the polar ice sheets is estimated by combining the results of existing independent techniques. We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth’s polar ice sheets. We find that there is good agreement between different satellite methods—especially in Greenland and West Antarctica—and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by –142 ± 49, +14 ± 43, –65 ± 26, and –20 ± 14 gigatonnes year−1, respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year−1 to the rate of global sea-level rise.

[1]  T. Koffman Reduced ice extent on the western Antarctic Peninsula at 700-970 cal. yr B.P , 2012 .

[2]  Graeme L. Stephens,et al.  Snowfall‐driven mass change on the East Antarctic ice sheet , 2012 .

[3]  X. Fettweis,et al.  Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model , 2012 .

[4]  Matt A. King,et al.  A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea‐level change and present‐day uplift rates , 2012 .

[5]  R. Forsberg,et al.  Variability of mass changes at basin scale for Greenland and Antarctica , 2012 .

[6]  E. Ivins,et al.  Timing of the most recent Neoglacial advance and retreat in the South Shetland Islands, Antarctic Peninsula: insights from raised beaches and Holocene uplift rates , 2012 .

[7]  Theodore A. Scambos,et al.  Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002 , 2012 .

[8]  Eric Rignot,et al.  Ice flow in Greenland for the International Polar Year 2008–2009 , 2012 .

[9]  D. Vaughan,et al.  Antarctic ice-sheet loss driven by basal melting of ice shelves , 2012, Nature.

[10]  S. Palm,et al.  Modeling drifting snow in Antarctica with a regional climate model: 1. Methods and model evaluation , 2012 .

[11]  E. van Meijgaard,et al.  A new, high‐resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling , 2012 .

[12]  Anne M. Le Brocq,et al.  A deglacial model for Antarctica: geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustment , 2012 .

[13]  V. Masson‐Delmotte,et al.  Uncertainties in elevation changes and their impact on Antarctic temperature records since the end of the last glacial period , 2012 .

[14]  I. Joughin,et al.  21st-Century Evolution of Greenland Outlet Glacier Velocities , 2011, Science.

[15]  K. Lambeck,et al.  Sea level and shoreline reconstructions for the Red Sea: isostatic and tectonic considerations and implications for hominin migration out of Africa , 2011 .

[16]  Peter J. Clarke,et al.  Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations , 2011 .

[17]  M. Bosilovich,et al.  The Effect of Satellite Observing System Changes on MERRA Water and Energy Fluxes , 2011 .

[18]  M. R. van den Broeke,et al.  An improved semi-empirical model for the densification of Antarctic firn , 2011 .

[19]  Kevin E. Trenberth,et al.  Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses , 2011 .

[20]  B. Scheuchl,et al.  Ice Flow of the Antarctic Ice Sheet , 2011, Science.

[21]  P. Whitehouse,et al.  Reconstructing the Last Glacial Maximum ice sheet in the Weddell Sea embayment, Antarctica, using numerical modelling constrained by field evidence , 2011 .

[22]  Andrew J. Monaghan,et al.  An Assessment of Precipitation Changes over Antarctica and the Southern Ocean since 1989 in Contemporary Global Reanalyses , 2011 .

[23]  J. Bamber,et al.  Antarctic ice-shelf thickness from satellite radar altimetry , 2011, Journal of Glaciology.

[24]  S. Jacobs,et al.  Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf , 2011 .

[25]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[26]  R. DeConto,et al.  West Antarctic Ice Sheet elevations in the Ohio Range: Geologic constraints and ice sheet modeling prior to the last highstand , 2011 .

[27]  Byron D. Tapley,et al.  Interannual variability of Greenland ice losses from satellite gravimetry , 2011 .

[28]  D. Sugden,et al.  Glacial/interglacial ice-stream stability in the Weddell Sea embayment, Antarctica , 2011 .

[29]  M. Bosilovich,et al.  The Moisture Budget of the Polar Atmosphere in MERRA , 2011 .

[30]  H. Zwally,et al.  Overview and Assessment of Antarctic Ice-Sheet Mass Balance Estimates: 1992–2009 , 2011 .

[31]  Eric Rignot,et al.  Antarctic grounding line mapping from differential satellite radar interferometry , 2011 .

[32]  J. Wahr,et al.  Ice Age Earth Rotation , 2011 .

[33]  Zizhan Zhang,et al.  Mass change detection in Antarctic ice sheet using ICESat block analysis techniques from 2003-2008 , 2011 .

[34]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[35]  Eric Rignot,et al.  Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise , 2011 .

[36]  M. Flanner,et al.  A new albedo parameterization for use in climate models over the Antarctic ice sheet , 2011 .

[37]  D. Bromwich,et al.  Precipitation Changes in High Southern Latitudes from Global Reanalyses: A Cautionary Tale , 2011 .

[38]  Sebastian B. Simonsen,et al.  Mass balance of the Greenland ice sheet (2003–2008) from ICESat data – the impact of interpolation, sampling and firn density , 2011 .

[39]  R. DeConto,et al.  Retreat of the East Antarctic ice sheet during the last glacial termination , 2011 .

[40]  D. Hodgson,et al.  Post-glacial regional climate variability along the East Antarctic coastal margin - evidence from shallow marine and coastal terrestrial records , 2011 .

[41]  Axel Rülke,et al.  On-land ice loss and glacial isostatic adjustment at the drake passage: 2003-2009 , 2011 .

[42]  E. Schrama,et al.  Revisiting Greenland ice sheet mass loss observed by GRACE , 2011 .

[43]  K. Järvelin Evaluation , 2008, Interactive Information Seeking, Behaviour and Retrieval.

[44]  D. Fink,et al.  Cosmogenic nuclide evidence for enhanced sensitivity of an East Antarctic ice stream to change during the last deglaciation , 2011 .

[45]  G. Balco Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010 , 2011 .

[46]  Jun Li,et al.  Modeling of firn compaction for estimating ice-sheet mass change from observed ice-sheet elevation change , 2011, Annals of Glaciology.

[47]  Jack L. Saba,et al.  Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002 , 2011, Journal of Glaciology.

[48]  Xavier Fettweis,et al.  The role of albedo and accumulation in the 2010 melting record in Greenland , 2011 .

[49]  K. Steffen,et al.  Climate of the Greenland ice sheet using a high-resolution climate model – Part 1: Evaluation , 2010 .

[50]  X. Fettweis,et al.  Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models , 2010 .

[51]  T. Nagler,et al.  The imbalance of glaciers after disintegration of Larsen-B ice shelf, Antarctic Peninsula , 2010 .

[52]  V. Masson‐Delmotte,et al.  TALDICE-1 age scale of the Talos Dome deep ice core, East Antarctica , 2010 .

[53]  Michael B. Heflin,et al.  Simultaneous estimation of global present-day water transport and glacial isostatic adjustment , 2010 .

[54]  Ian M. Howat,et al.  Greenland flow variability from ice-sheet-wide velocity mapping , 2010, Journal of Glaciology.

[55]  Uang,et al.  The NCEP Climate Forecast System Reanalysis , 2010 .

[56]  Duncan J. Wingham,et al.  Recent loss of floating ice and the consequent sea level contribution , 2010 .

[57]  Stephen D. McPhail,et al.  Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat , 2010 .

[58]  G. Denton,et al.  Reduced ice extent on the western Antarctic Peninsula at 700–970 cal. yr B.P. , 2010 .

[59]  W. Landman Climate change 2007: the physical science basis , 2010 .

[60]  J. Stone,et al.  Late Quaternary evolution of Reedy Glacier, Antarctica , 2010 .

[61]  A. Hubbard,et al.  Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea embayment: Constraints on past ice volume change , 2010 .

[62]  E. Ivins,et al.  Ocean loading effects on the prediction of Antarctic glacial isostatic uplift and gravity rates , 2010 .

[63]  R. Forsberg,et al.  Greenland Ice Sheet Mass Loss from GRACE Monthly Models , 2010 .

[64]  B. Csathó,et al.  Reconstruction of Greenland Ice Sheet Changes from Laser Altimetry Measurements , 2009 .

[65]  Byron D. Tapley,et al.  Accelerated Antarctic ice loss from satellite gravity measurements , 2009 .

[66]  John Turner,et al.  Antarctic climate change and the environment , 2009, Antarctic Science.

[67]  Bob E. Schutz,et al.  Glacial Isostatic Adjustment over Antarctica from combined ICESat and GRACE satellite data , 2009 .

[68]  M. R. van den Broeke,et al.  Partitioning Recent Greenland Mass Loss , 2009, Science.

[69]  D. Vaughan,et al.  Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets , 2009, Nature.

[70]  Michael Bevis,et al.  Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance , 2009 .

[71]  I. Velicogna Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE , 2009 .

[72]  R. Ray,et al.  Qualitative comparisons of global ocean tide models by analysis of intersatellite ranging data , 2009 .

[73]  Duncan J. Wingham,et al.  Spatial and temporal evolution of Pine Island Glacier thinning, 1995–2006 , 2009 .

[74]  G. Milne,et al.  Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent , 2009 .

[75]  Bob E. Schutz,et al.  A comparison of coincident GRACE and ICESat data over Antarctica , 2009 .

[76]  R. Dietrich,et al.  Signal and error in mass change inferences from GRACE: the case of Antarctica , 2009 .

[77]  A. Payne,et al.  The Glimmer community ice sheet model , 2009 .

[78]  M. R. van den Broeke,et al.  Higher surface mass balance of the Greenland ice sheet revealed by high‐resolution climate modeling , 2009 .

[79]  M. Dyurgerov,et al.  Mountain glaciers and ice caps around Antarctica make a large sea‐level rise contribution , 2009 .

[80]  K. Stattegger,et al.  Termination of the Last Glacial Maximum sea-level lowstand: The Sunda-Shelf data revisited , 2009 .

[81]  Duncan J. Wingham,et al.  Spatial and temporal evolution of Pine Island Glacier thinning , 2009 .

[82]  B. Smith,et al.  An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008) , 2009, Journal of Glaciology.

[83]  R. Lindenbergh,et al.  Estimating the rates of mass change, ice volume change and snow volume change in Greenland from ICESat and GRACE data , 2009 .

[84]  Guillaume Ramillien,et al.  Sea level budget over 2003-2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo , 2009 .

[85]  Eric Rignot,et al.  Mass balance of the Greenland ice sheet from 1958 to 2007 , 2008 .

[86]  D. Chambers,et al.  GRACE observes small‐scale mass loss in Greenland , 2008 .

[87]  David M. Holland,et al.  Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters , 2008 .

[88]  D. Bromwich,et al.  ADVANCES IN DESCRIBING RECENT ANTARCTIC CLIMATE VARIABILITY , 2008 .

[89]  G. Catania,et al.  Holocene accumulation and ice sheet dynamics in central West Antarctica , 2008 .

[90]  Matt A. King,et al.  Antarctic ice mass balance estimates from GRACE: Tidal aliasing effects , 2008 .

[91]  Ian Joughin,et al.  Seasonal Speedup Along the Western Flank of the Greenland Ice Sheet , 2008, Science.

[92]  John Turner,et al.  Antarctic climate change over the twenty first century , 2008 .

[93]  Eric Rignot,et al.  Recent Antarctic ice mass loss from radar interferometry and regional climate modelling , 2008 .

[94]  Andrea Bordoni,et al.  Isolating the PGR signal in the GRACE data: impact on mass balance estimates in Antarctica and Greenland , 2008 .

[95]  D. Rowlands,et al.  Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions , 2008, Journal of Glaciology.

[96]  E. van Meijgaard,et al.  The KNMI regional atmospheric climate model RACMO version 2.1 , 2008 .

[97]  Douglas J. Jerolmack,et al.  Scaling relationships and evolution of distributary networks on wave‐influenced deltas , 2007 .

[98]  T. Painter,et al.  MODIS-based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size , 2007 .

[99]  Archie Paulson,et al.  FAST TRACK PAPER: Inference of mantle viscosity from GRACE and relative sea level data , 2007 .

[100]  Edward Hanna,et al.  Greenland Ice Sheet mass balance , 2007 .

[101]  John M. Wahr,et al.  Multi‐sensor analysis of water storage variations of the Caspian Sea , 2007 .

[102]  Kenji Kawamura,et al.  1-D-ice flow modelling at EPICA Dome C and Dome Fuji, East Antarctica , 2007 .

[103]  Petteri Uotila,et al.  Changes in Antarctic net precipitation in the 21st century based on Intergovernmental Panel on Climate Change (IPCC) model scenarios , 2007 .

[104]  D. Bromwich,et al.  A tropospheric assessment of the ERA‐40, NCEP, and JRA‐25 global reanalyses in the polar regions , 2007 .

[105]  Andrew Shepherd,et al.  Recent Sea-Level Contributions of the Antarctic and Greenland Ice Sheets , 2007, Science.

[106]  T. Scambos,et al.  Rapid Changes in Ice Discharge from Greenland Outlet Glaciers , 2007, Science.

[107]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[108]  J. Christensen,et al.  The HIRHAM Regional Climate Model. Version 5 (beta) , 2007 .

[109]  Corinne Le Quéré,et al.  Observations: Oceanic Climate Change and Sea Level , 2007 .

[110]  R. Nerem,et al.  Recent Greenland Ice Mass Loss by Drainage System from Satellite Gravity Observations , 2006, Science.

[111]  J. Wahr,et al.  Acceleration of Greenland ice mass loss in spring 2004 , 2006, Nature.

[112]  Guillaume Ramillien,et al.  Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE , 2006 .

[113]  D. Bromwich,et al.  Insignificant Change in Antarctic Snowfall Since the International Geophysical Year , 2006, Science.

[114]  Ian Simmonds,et al.  Simulated Antarctic precipitation and surface mass balance at the end of the twentieth and twenty-first centuries , 2006 .

[115]  G. Marshall,et al.  Mass balance of the Antarctic ice sheet , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[116]  B. Tapley,et al.  Antarctic mass rates from GRACE , 2006 .

[117]  W. Krabill,et al.  Progressive increase in ice loss from Greenland , 2006 .

[118]  Siegfried Schubert,et al.  NASA's Modern Era Retrospective-Analysis for Research and Applications (MERRA): Early Results and Future Directions , 2006 .

[119]  Bob E. Schutz,et al.  ICESat Antarctic elevation data: Preliminary precision and accuracy assessment , 2006 .

[120]  J. Wahr,et al.  Measurements of Time-Variable Gravity Show Mass Loss in Antarctica , 2006, Science.

[121]  E. Rignot,et al.  Changes in the Velocity Structure of the Greenland Ice Sheet , 2006, Science.

[122]  R. Forsberg,et al.  Mass change of the Greenland Ice Sheet from GRACE , 2006 .

[123]  E. Ivins,et al.  Antarctic glacial isostatic adjustment: a new assessment , 2005, Antarctic Science.

[124]  Kirill Khvorostovsky,et al.  Recent Ice-Sheet Growth in the Interior of Greenland , 2005, Science.

[125]  Isabella Velicogna,et al.  Greenland mass balance from GRACE , 2005 .

[126]  Edward Hanna,et al.  Snowfall-Driven Growth in East Antarctic Ice Sheet Mitigates Recent Sea-Level Rise , 2005, Science.

[127]  J. G. Ferrigno,et al.  Retreating Glacier Fronts on the Antarctic Peninsula over the Past Half-Century , 2005, Science.

[128]  N. Mohindra,et al.  Scientific basis , 2005, British Dental Journal.

[129]  Jack L. Saba,et al.  Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992-2002 , 2005 .

[130]  A. Vieli,et al.  Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans , 2004 .

[131]  Ian Joughin,et al.  Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier , 2004, Nature.

[132]  Robert N. Swift,et al.  Greenland Ice Sheet: Increased coastal thinning , 2004 .

[133]  Eric Rignot,et al.  Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf , 2004 .

[134]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[135]  S. Hagemann,et al.  Can climate trends be calculated from reanalysis data , 2004 .

[136]  W. Peltier Geoide Height Time Dependence and Global Glacial Isostasy: The ICE-5G(VM2) Model and GRACE , 2004 .

[137]  K. Lambeck,et al.  Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models , 2004 .

[138]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[139]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[140]  N. Young,et al.  Snow accumulation variability in Wilkes Land, East Antarctica, and the relationship to atmospheric ridging in the 130°–170°E region since 1930 , 2003 .

[141]  Arve Kylling,et al.  International Photolysis Frequency Measurement and Model Intercomparison (IPMMI): Spectral actinic solar flux measurements and modeling , 2003 .

[142]  J. Mitrovica,et al.  On post-glacial sea level: I. General theory , 2003 .

[143]  Pedro Skvarca,et al.  Glacier Surge After Ice Shelf Collapse , 2003, Science.

[144]  Martin J. Siegert,et al.  EOS Trans. AGU , 2003 .

[145]  H. Zwally,et al.  Overview of ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land , 2002 .

[146]  Eric Rignot,et al.  Mass Balance of Polar Ice Sheets , 2002, Science.

[147]  W. Peltier,et al.  Greenland glacial history and local geodynamic consequences , 2002 .

[148]  Duncan J. Wingham,et al.  Inland thinning of the Amundsen Sea sector, West Antarctica , 2002 .

[149]  John B. Anderson,et al.  The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review , 2002 .

[150]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[151]  J. Legarsky,et al.  Coherent radar ice thickness measurements over the Greenland ice sheet , 2001 .

[152]  M. Tamisiea,et al.  Global geoid and sea level changes due to present-day ice mass fluctuations , 2001 .

[153]  David G. Vaughan,et al.  BEDMAP: a new ice thickness and subglacial topographic model of Antarctica , 2001 .

[154]  A. Shepherd,et al.  Inland thinning of Pine Island Glacier, West Antarctica. , 2001, Science.

[155]  W. Krabill,et al.  Greenland Ice Sheet: High-Elevation Balance and Peripheral Thinning. , 2000, Science.

[156]  Duncan J. Wingham,et al.  A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance , 2000 .

[157]  H. J. Zwally,et al.  Spatial distribution of net surface accumulation on the Antarctic ice sheet , 2000, Annals of Glaciology.

[158]  D. Vaughan,et al.  Reassessment of net surface mass balance in Antarctica , 1999 .

[159]  J. Ashby References and Notes , 1999 .

[160]  R. Arthern,et al.  The Natural Fluctuations of Firn Densification and Their Effect on the Geodetic Determination of Ice Sheet Mass Balance , 1998 .

[161]  R. Scharroo,et al.  Antarctic elevation change from 1992 to 1996 , 1998, Science.

[162]  E. Ivins,et al.  Predictions of Antarctic crustal motions driven by present-day ice sheet evolution and by isostatic memory of the Last Glacial Maximum , 1998 .

[163]  Sridhar Anandakrishnan,et al.  Stagnation of Ice Stream C, West Antarctica by water piracy , 1997 .

[164]  D. Yuen,et al.  Initial‐value and modal approaches for transient viscoelastic responses with complex viscosity profiles , 1996 .

[165]  E. Isaksson,et al.  A century of accumulation and temperature changes in Dronning Maud Land, Antarctica , 1996 .

[166]  H. Rott,et al.  Rapid Collapse of Northern Larsen Ice Shelf, Antarctica , 1996, Science.

[167]  G. Müller,et al.  The Scientific Basis , 1995 .

[168]  R. Oswald A cautionary tale. , 1994, Accident and emergency nursing.

[169]  Erik R. Ivins,et al.  Deep mantle viscous structure with prior estimate and satellite constraint , 1993 .

[170]  A. Ohmura,et al.  New precipitation and accumulation maps for Greenland , 1991, Journal of Glaciology.

[171]  E. Mosley‐Thompson,et al.  Glaciological studies at Siple Station (Antarctica): potential ice-core paleoclimatic record , 1991, Journal of Glaciology.

[172]  J G Marsh,et al.  Growth of Greenland Ice Sheet: Measurement , 1989, Science.

[173]  R. Fairbanks A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation , 1989, Nature.

[174]  N. Reeh,et al.  Mass Balance of the Greenland Ice Sheet at Dye 3 , 1985, Journal of Glaciology.

[175]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[176]  A. P. Crary,et al.  Antarctic Snow and Ice Studies II , 1971 .