Effect of carbon nanotubes on melting latent heat of paraffin wax: An experimental and simulated research

[1]  S. K. Tyagi,et al.  A comprehensive review on phase change materials for heat storage applications: Development, characterization, thermal and chemical stability , 2022, Solar Energy Materials and Solar Cells.

[2]  Yunfei Xu,et al.  Preparation and thermal properties of shape-stabilized composite phase change materials based on paraffin wax and carbon foam , 2021, Polymer.

[3]  A. Sari,et al.  Phase change material based advance solar thermal energy storage systems for building heating and cooling applications: A prospective research approach , 2021 .

[4]  Yuying Yan,et al.  Depression of melting point and latent heat of molten salts as inorganic phase change material: Size effect and mechanism , 2021, Journal of Molecular Liquids.

[5]  Xiao Chen,et al.  Molecular insights into the interaction mechanism between C18 phase change materials and methyl-modified carbon nanotubes , 2021 .

[6]  Changying Zhao,et al.  Molecular dynamics simulation of thermal and phonon transport characteristics of nanocomposite phase change material , 2021, Journal of Molecular Liquids.

[7]  R. Turczyn,et al.  Ultra-long carbon nanotube-paraffin composites of record thermal conductivity and high phase change enthalpy among paraffin-based heat storage materials , 2021 .

[8]  A. Sari,et al.  Effects of carbon-based fillers on thermal properties of fatty acids and their eutectics as phase change materials used for thermal energy storage: A Review , 2021 .

[9]  JunHee Lee,et al.  Form-stabled phase change material loaded with Ag NPs onto encapsulated n-tertracosane@SiO2, and thermal energy storage behavior , 2021 .

[10]  A. Sari,et al.  Fly Ash/Octadecane Shape-Stabilized Composite PCMs Doped with Carbon-Based Nanoadditives for Thermal Regulation Applications , 2021 .

[11]  Thermal energy storage and thermal conductivity properties of fatty acid/fatty acid-grafted-CNTs and fatty acid/CNTs as novel composite phase change materials , 2020, Scientific reports.

[12]  A. Horibe,et al.  Thermal properties and related core/shell structure of n-tetracosane microencapsulated by calcium carbonate , 2020 .

[13]  Thermal energy storage and thermal conductivity properties of Octadecanol-MWCNT composite PCMs as promising organic heat storage materials , 2020, Scientific Reports.

[14]  M. Afrand,et al.  Improving the thermal conductivity of paraffin by incorporating MWCNTs nanoparticles , 2020, Journal of Thermal Analysis and Calorimetry.

[15]  A. V. Arasu,et al.  A detailed review on heat transfer rate, supercooling, thermal stability and reliability of nanoparticle dispersed organic phase change material for low-temperature applications , 2020 .

[16]  Rouhollah Ahmadi,et al.  Investigation of tetracosane thermal transport in presence of graphene and carbon nanotube fillers––A molecular dynamics study , 2020 .

[17]  Shuai Li,et al.  An experimental and numerical investigation on a paraffin wax/graphene oxide/carbon nanotubes composite material for solar thermal storage applications , 2020 .

[18]  Changying Zhao,et al.  Molecular dynamics simulation of nanoparticle effect on melting enthalpy of paraffin phase change material , 2020 .

[19]  Kun Wu,et al.  Highly thermally conductive phase change composites for thermal energy storage featuring shape memory , 2020 .

[20]  M. Fang,et al.  Polyacrylonitrile/polyethylene glycol phase-change material fibres prepared with hybrid polymer blends and nano-SiC fillers via centrifugal spinning , 2020 .

[21]  Fahad Saleem Ahmed Khan,et al.  Synthesis of organic phase change materials (PCM) for energy storage applications: A review , 2019, Nano-Structures & Nano-Objects.

[22]  Youjian Zhu,et al.  Experimental study of thermo-physical properties and application of paraffin-carbon nanotubes composite phase change materials , 2019, International Journal of Heat and Mass Transfer.

[23]  Yang Liu,et al.  Molecular dynamics simulation of the microscopic mechanisms of the dissolution, diffusion and aggregation processes for waxy crystals in crude oil mixtures , 2019, Journal of Petroleum Science and Engineering.

[24]  Ya-Ling He,et al.  A review of phase change material and performance enhancement method for latent heat storage system , 2018, Renewable and Sustainable Energy Reviews.

[25]  A. Sari,et al.  Diatomite/CNTs/PEG composite PCMs with shape-stabilized and improved thermal conductivity: Preparation and thermal energy storage properties , 2018 .

[26]  Chi‐Man Lawrence Wu,et al.  Chlorinated paraffins wrapping of carbon nanotubes: A theoretical investigation , 2018 .

[27]  Nasrudin Abd Rahim,et al.  Novel approaches and recent developments on potential applications of phase change materials in solar energy , 2018 .

[28]  Fahad A. Al-Sulaiman,et al.  Silica fume/capric acid-palmitic acid composite phase change material doped with CNTs for thermal energy storage , 2017, Solar Energy Materials and Solar Cells.

[29]  Yushi Liu,et al.  Investigation of specific heat and latent heat enhancement in hydrate salt based TiO2 nanofluid phase change material , 2017 .

[30]  Xin Min,et al.  Enhancement of thermal conductivity by the introduction of carbon nanotubes as a filler in paraffin/expanded perlite form-stable phase-change materials , 2017 .

[31]  Zhonghao Rao,et al.  Thermal conductivity enhancement of paraffin by adding boron nitride nanostructures: A molecular dynamics study , 2017 .

[32]  R. M. Sarviya,et al.  An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material , 2016 .

[33]  Halime Paksoy,et al.  The effects of various carbon derivative additives on the thermal properties of paraffin as a phase change material , 2016 .

[34]  Shuying Wu,et al.  Paraffin confined in carbon nanotubes as nano-encapsulated phase change materials: experimental and molecular dynamics studies , 2015 .

[35]  Halime Paksoy,et al.  Improving thermal conductivity phase change materials—A study of paraffin nanomagnetite composites , 2015 .

[36]  Li Jia,et al.  Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery , 2015 .

[37]  Hohyun Lee,et al.  Nanofluid PCMs for thermal energy storage: Latent heat reduction mechanisms and a numerical study of effective thermal storage performance , 2014 .

[38]  K. Cen,et al.  Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials , 2013 .

[39]  M. K. Rathod,et al.  Thermal stability of phase change materials used in latent heat energy storage systems: A review , 2013 .

[40]  Jinlong Zhu,et al.  Electro- and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges. , 2012, ACS nano.

[41]  P. Raczyński,et al.  The impact of a carbon nanotube on the cholesterol domain localized on a protein surface , 2010, 1101.1003.

[42]  Yibing Cai,et al.  Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites , 2009 .

[43]  Zhong Xin,et al.  Thermal properties of paraffin based composites containing multi-walled carbon nanotubes , 2009 .

[44]  K. Lafdi,et al.  Carbon nanoadditives to enhance latent energy storage of phase change materials , 2008 .

[45]  A. Sari,et al.  Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material , 2007 .

[46]  M. Tuckerman,et al.  A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal–isobaric ensemble , 2006 .

[47]  Yoshinori Ando,et al.  Materials science: The smallest carbon nanotube , 2000, Nature.

[48]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[49]  Denis J. Evans,et al.  The Nose–Hoover thermostat , 1985 .