A local algorithm for finding dense subgraphs

We describe a local algorithm for finding subgraphs with high density, according to a measure of density introduced by Kannan and Vinay [1999]. The algorithm takes as input a bipartite graph <i>G</i>, a starting vertex <i>v</i>, and a parameter <i>k</i>, and outputs an induced subgraph of <i>G</i>. It is local in the sense that it does not examine the entire input graph; instead, it adaptively explores a region of the graph near the starting vertex. The running time of the algorithm is bounded by <i>O</i>(Δ <i>k</i><sup>2</sup>), which depends on the maximum degree Δ, but is otherwise independent of the graph. We prove the following approximation guarantee: for any subgraph <i>S</i> with <i>k′</i> vertices and density θ, there exists a set <i>S</i>′ ⊆ <i>S</i> for which the algorithm outputs a subgraph with density Ω(θ/log Δ) whenever <i>v</i> ∈ <i>S</i>′ and <i>k</i> ≥ <i>k</i>′. We prove that <i>S</i>′ contains at least half of the edges in <i>S</i>.

[1]  Guy Kortsarz,et al.  Generating Sparse 2-Spanners , 1992, J. Algorithms.

[2]  Kumar Chellapilla,et al.  Finding Dense Subgraphs with Size Bounds , 2009, WAW.

[3]  Guy Kortsarz,et al.  Generating Sparse 2-Spanners , 1994, J. Algorithms.

[4]  Samir Khuller,et al.  On Finding Dense Subgraphs , 2009, ICALP.

[5]  Uriel Feige,et al.  The Dense k -Subgraph Problem , 2001, Algorithmica.

[6]  Ravi Kumar,et al.  Discovering Large Dense Subgraphs in Massive Graphs , 2005, VLDB.

[7]  Ravi Kumar,et al.  Trawling the Web for Emerging Cyber-Communities , 1999, Comput. Networks.

[8]  Guy Kortsarz,et al.  Generating Sparse 2spanners , 2010 .

[9]  U. Feige,et al.  On the Densest K-subgraph Problem , 1997 .

[10]  Sebastian M. Cioaba,et al.  Spectral Densest Subgraph and Independence Number of a Graph , 2007, J. Univers. Comput. Sci..

[11]  M. Kaufmann What Can Be Computed Locally ? , 2003 .

[12]  Nathan Linial,et al.  Constructing expander graphs by 2-lifts and discrepancy vs. spectral gap , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[13]  Fan Chung Graham,et al.  Local Graph Partitioning using PageRank Vectors , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[14]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[15]  Moses Charikar,et al.  Greedy approximation algorithms for finding dense components in a graph , 2000, APPROX.

[16]  U. Feige,et al.  On the densest k-subgraph problems , 1997 .

[17]  Andrew V. Goldberg,et al.  Finding a Maximum Density Subgraph , 1984 .

[18]  Robert E. Tarjan,et al.  A Fast Parametric Maximum Flow Algorithm and Applications , 1989, SIAM J. Comput..