Learning cost-sensitive active classifiers

[1]  Dan Roth,et al.  A Winnow-Based Approach to Context-Sensitive Spelling Correction , 1998, Machine Learning.

[2]  H. Sebastian Seung,et al.  Selective Sampling Using the Query by Committee Algorithm , 1997, Machine Learning.

[3]  Roni Khardon,et al.  Learning to Take Actions , 1996, Machine Learning.

[4]  David A. Cohn,et al.  Improving generalization with active learning , 1994, Machine Learning.

[5]  Robert C. Holte,et al.  Very Simple Classification Rules Perform Well on Most Commonly Used Datasets , 1993, Machine Learning.

[6]  John N. Tsitsiklis,et al.  Active Learning Using Arbitrary Binary Valued Queries , 1993, Machine Learning.

[7]  Nicole A. Lazar,et al.  Statistical Analysis With Missing Data , 2003, Technometrics.

[8]  Stephen Kwek,et al.  Learning from examples with unspecified attribute values , 2003, Inf. Comput..

[9]  Dan Roth,et al.  A Classification Approach to Word Prediction , 2000, ANLP.

[10]  Ronen Basri,et al.  Clustering appearances of 3D objects , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[11]  S. Pattinson,et al.  Learning to fly. , 1998 .

[12]  Richard S. Sutton,et al.  Introduction to Reinforcement Learning , 1998 .

[13]  Alexander Kogan,et al.  Knowing what doesn't Matter: Exploiting the Omission of Irrelevant Data , 1997, Artif. Intell..

[14]  Russell Greiner,et al.  Why Experimentation can be better than "Perfect Guidance" , 1997, ICML.

[15]  Stephen Kwek,et al.  Learning from examples with unspecified attribute values (extended abstract) , 1997, COLT '97.

[16]  Dan Roth,et al.  Learning to reason , 1994, JACM.

[17]  David W. Aha,et al.  Special Issue on Lazy Learning , 1997 .

[18]  Dan Roth,et al.  Learning Active Classifiers , 1996, ICML.

[19]  Pekka Orponen,et al.  Probably Approximately Optimal Satisficing Strategies , 1996, Artif. Intell..

[20]  Dan Roth,et al.  Learning to Reason: The Non-Monotonic Case , 1995, IJCAI.

[21]  Peter Auer,et al.  Theory and Applications of Agnostic PAC-Learning with Small Decision Trees , 1995, ICML.

[22]  Dan Roth,et al.  Learning to Reason with a Restricted View , 1995, COLT '95.

[23]  Peter D. Turney Cost-Sensitive Classification: Empirical Evaluation of a Hybrid Genetic Decision Tree Induction Algorithm , 1994, J. Artif. Intell. Res..

[24]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[25]  Ron Kohavi,et al.  Irrelevant Features and the Subset Selection Problem , 1994, ICML.

[26]  David Heckerman,et al.  Troubleshooting Under Uncertainty , 1994 .

[27]  N. Fisher,et al.  Probability Inequalities for Sums of Bounded Random Variables , 1994 .

[28]  Dale Schuurmans,et al.  Learning Default Concepts , 1994 .

[29]  Avrim Blum,et al.  On learning embedded symmetric concepts , 1993, COLT '93.

[30]  Shai Ben-David,et al.  Learning with restricted focus of attention , 1993, COLT '93.

[31]  David Haussler,et al.  Decision Theoretic Generalizations of the PAC Model for Neural Net and Other Learning Applications , 1992, Inf. Comput..

[32]  Dana Angluin,et al.  Computational learning theory: survey and selected bibliography , 1992, STOC '92.

[33]  Gregory M. Provan,et al.  The Utility of Consistency-Based Diagnostic Techniques , 1991, KR.

[34]  Robert E. Schapire,et al.  Efficient distribution-free learning of probabilistic concepts , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[35]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[36]  J. Ross Quinlan,et al.  Unknown Attribute Values in Induction , 1989, ML.

[37]  Dana Angluin,et al.  Learning Regular Sets from Queries and Counterexamples , 1987, Inf. Comput..

[38]  N. Littlestone Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[39]  Leslie G. Valiant,et al.  On the learnability of Boolean formulae , 1987, STOC.

[40]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[41]  Tom M. Mitchell,et al.  Models of Learning Systems. , 1979 .

[42]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[43]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[44]  Donald B. Rubin,et al.  Max-imum Likelihood from Incomplete Data , 1972 .

[45]  Ronald A. Howard,et al.  Information Value Theory , 1966, IEEE Trans. Syst. Sci. Cybern..

[46]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .