A multi-level bipolar memristive device based on visible light sensing MoS2 thin film

[1]  S. Chang,et al.  Two-bit-per-cell resistive switching memory device with a Ti/MgZnO/Pt structure , 2015 .

[2]  Tsuguo Fukuda,et al.  Hydrothermal synthesis of MoS2 nanowires , 2003 .

[3]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[4]  Kijung Yong,et al.  Photo-stimulated resistive switching of ZnO nanorods , 2012, Nanotechnology.

[5]  A. Roy,et al.  Incorporation of SnO2 nanoparticles in PMMA for performance enhancement of a transparent organic resistive memory device , 2015 .

[6]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[7]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[8]  Soumen Das,et al.  Tunable Direct Bandgap Optical Transitions in MoS2 Nanocrystals for Photonic Devices , 2015 .

[9]  Sefaattin Tongay,et al.  Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. , 2012, Nano letters.

[10]  R. J. Jenkins,et al.  Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity , 1961 .

[11]  Hyun‐Seok Kim,et al.  Light induced resistive switching property of solution synthesized ZnO nanorod , 2015 .

[12]  A. Roy,et al.  Stable charge retention in graphene-MoS 2 assemblies for resistive switching effect in ultra-thin super-flexible organic memory devices , 2018, Organic Electronics.

[13]  Resistive and New Optical Switching Memory Characteristics Using Thermally Grown Ge0.2Se0.8 Film in Cu/GeSex/W Structure , 2015, Nanoscale Research Letters.

[14]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[15]  Germany,et al.  Theoretical current-voltage characteristics of ferroelectric tunnel junctions , 2005, cond-mat/0503546.

[16]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[17]  Yang Yang,et al.  Electrical memory devices based on inorganic/organic nanocomposites , 2012 .

[18]  A. Roy,et al.  Multilevel programming in Cu/NiOy/NiOx/Pt unipolar resistive switching devices , 2016, Nanotechnology.

[19]  Peng Chen,et al.  Light-controlled resistive switching of ZnWO4 nanowires array , 2014 .

[20]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  P. Ilanchezhiyan,et al.  MoS2 memristor with photoresistive switching , 2016, Scientific Reports.

[22]  A. Roy,et al.  IMPROVEMENT OF RETENTIVITY IN TiOx/HfOx BILAYER STRUCTURE FOR LOW POWER RESISTIVE SWITCHING MEMORY APPLICATIONS , 2015 .

[23]  K. Sun,et al.  Memristive Behavior and Ideal Memristor of 1T Phase MoS2 Nanosheets. , 2016, Nano letters.

[24]  Jae Ho Shim,et al.  Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer. , 2010, Nano letters.

[25]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[26]  A. Giri,et al.  Highly Scalable Synthesis of MoS2 Thin Films with Precise Thickness Control via Polymer-Assisted Deposition , 2017 .

[27]  Anthony J. Kenyon,et al.  Light-activated resistance switching in SiOx RRAM devices , 2017 .

[28]  Zhi-Min Liao,et al.  Memory and threshold resistance switching in Ni/NiO core-shell nanowires. , 2011, Nano letters.

[29]  Xiaoyong Xu,et al.  Resistive switching memories in MoS2 nanosphere assemblies , 2014 .

[30]  L. Lauhon,et al.  Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. , 2015, Nature nanotechnology.

[31]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[32]  D. H. S. Maithripala,et al.  Direct measurement of thermal conductivity of aluminum nanowires , 2009 .

[33]  M. Terrones,et al.  Intrinsic carrier mobility of multi-layered MoS2 field-effect transistors on SiO2 , 2013, 1301.2813.

[34]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[35]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[36]  G. Scuseria,et al.  The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory , 2011 .

[37]  Ee Wah Lim,et al.  Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey , 2015 .

[38]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[39]  J. Rogers,et al.  Synthesis, assembly and applications of semiconductor nanomembranes , 2011, Nature.

[40]  Heng-Yuan Lee,et al.  Low-Power Switching of Nonvolatile Resistive Memory Using Hafnium Oxide , 2007 .

[41]  Yujong Kim,et al.  Colossal electroresistance mechanism in a Au ∕ Pr 0.7 Ca 0.3 Mn O 3 ∕ Pt sandwich structure: Evidence for a Mott transition , 2006 .

[42]  A. Roy,et al.  Improvement of reliability of polymer nanocomposite based transparent memory device by oxygen vacancy rich ZnO nanorods , 2016 .

[43]  A. Roy,et al.  Electrical reliability, multilevel data storage and mechanical stability of MoS2-PMMA nanocomposite-based non-volatile memory device , 2017 .

[44]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[45]  A. Roy,et al.  Multilevel resistance state of Cu/La2O3/Pt forming-free switching devices , 2016, Journal of Materials Science.

[46]  Hiroyuki Yamada,et al.  Resistive switching artificially induced in a dielectric/ferroelectric composite diode , 2013 .