Dependence Properties of Meta-Elliptical Distributions

A distribution is said to be meta-elliptical if its associated copula is elliptical. Various properties of these copulas are critically reviewed in terms of association measures, concepts, and stochastic orderings, including tail dependence. Most results pertain to the bivariate case.

[1]  Jean Averous,et al.  LTD and RTI dependence orderings , 2000 .

[2]  Takemi Yanagimoto,et al.  Partial orderings of permutations and monotonicity of a rank correlation statistic , 1969 .

[3]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[4]  W. Kruskal Ordinal Measures of Association , 1958 .

[5]  A. McNeil,et al.  KENDALL'S TAU FOR ELLIPTICAL DISTRIBUTIONS ∗ , 2003 .

[6]  J. Cooper TOTAL POSITIVITY, VOL. I , 1970 .

[7]  R. Nelsen An Introduction to Copulas , 1998 .

[8]  Rafael Schmidt,et al.  Tail dependence for elliptically contoured distributions , 2002, Math. Methods Oper. Res..

[9]  C. Genest,et al.  On blest's measure of rank correlation , 2003 .

[10]  Kilani Ghoudi,et al.  Extreme behaviour for bivariate elliptical distributions , 2005 .

[11]  E. Lehmann Some Concepts of Dependence , 1966 .

[12]  D. Blest Theory & Methods: Rank Correlation — an Alternative Measure , 2000 .

[13]  Christian Genest,et al.  Concepts de dépendance et ordres stochastiques pour des lois bidimensionnelles , 1990 .

[14]  H. Joe Multivariate models and dependence concepts , 1998 .

[15]  S. Kotz,et al.  Correlation and dependence , 2001 .

[16]  S. Karlin,et al.  Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions , 1980 .

[17]  F. Lindskog,et al.  Multivariate extremes, aggregation and dependence in elliptical distributions , 2002, Advances in Applied Probability.

[18]  S. Kotz,et al.  The Meta-elliptical Distributions with Given Marginals , 2002 .

[19]  Ludger Rüschendorf Characterization of dependence concepts in normal distributions , 1981 .

[20]  Christian Genest,et al.  The TP2 ordering of Kimeldorf and Sampson has the normal-agreeing property , 2002 .

[21]  Markus Junker,et al.  Elliptical copulas: applicability and limitations , 2003 .

[22]  G. Simons,et al.  On the theory of elliptically contoured distributions , 1981 .

[23]  A. Müller Stop-loss order for portfolios of dependent risks , 1997 .

[24]  G. Kimeldorf,et al.  Positive dependence orderings , 1987 .

[25]  Marco Scarsini,et al.  Stochastic Comparison of Random Vectors with a Common Copula , 2001, Math. Oper. Res..