Emission of the upper atmosphere is a sensitive indicator of solar — terrestrial processes: Summary of results over a period of 60 years

[1]  A. Semenov,et al.  Empirical model of variations in 656.3-nm hydrogen emission , 2010 .

[2]  A. I. Laptukhov,et al.  Difference in the air temperatures between the years of solar activity maximum and minimum and its mechanism , 2010 .

[3]  A. Semenov,et al.  Empirical model of variations in the helium 1083 nm emission. 2. Temperature , 2009 .

[4]  G. A. Nasyrov Variations in the atomic oxygen 630 nm emission intensity related to orography , 2009 .

[5]  A. Semenov,et al.  Empirical model of variations in the helium 1083 nm emission. 1. Intensity , 2009 .

[6]  N. N. Shefov,et al.  Airglow as an Indicator of Upper Atmospheric Structure and Dynamics , 2008 .

[7]  J. Holt,et al.  Long‐term temperature trends in the ionosphere above Millstone Hill , 2008 .

[8]  J. M. Picone,et al.  Thermospheric global average density trends, 1967–2007, derived from orbits of 5000 near‐Earth objects , 2008 .

[9]  G. A. Nasyrov Orography-caused variations in the 557.7 nm atomic oxygen emission intensity , 2007 .

[10]  P. Keckhut,et al.  Temperature trends in the middle atmosphere as seen by historical Russian rocket launches: Part 1, Volgograd (48.68°N, 44.35°E) , 2006 .

[11]  V. V. Suevalov,et al.  Estimation of long-term density variations in the upper atmosphere of the earth at minimums of solar activity from evolution of the orbital parameters of the earth’s artificial satellites , 2005 .

[12]  J. Laštovička Progress in trend studies: Highlights of the TREND2004 Workshop , 2005 .

[13]  J. Lean,et al.  Global change in the thermosphere: Compelling evidence of a secular decrease in density , 2004 .

[14]  R. P. Lowe,et al.  Review of mesospheric temperature trends , 2003 .

[15]  A. Semenov,et al.  The long-term trend of ozone at heights from 80 to 100 km at the mid-latitude mesopause for the nocturnal conditions , 2002 .

[16]  A. V. Tikhonov,et al.  The season peculiarities of behaviour of the long-term temperature trends in the middle atmosphere on the mid-latitudes , 2002 .

[17]  R. Tolson,et al.  Evidence of long term global decline in the Earth's thermospheric densities apparently related to anthropogenic effects , 2000 .

[18]  N. N. Shefov,et al.  The spatial distribution of gravity wave energy influx into the mesopause over a mountain lee , 2000 .

[19]  A. Semenov Long term temperature trends for different seasons by hydroxyl emission , 2000 .

[20]  M. K. Makuashev THE BLURRING EFFECT OF FRAUNHOFER LINES IN THE ATMOSPHERE , 1999 .

[21]  J. Bremer,et al.  Trends in the ionospheric E and F regions over Europe , 1998 .

[22]  Thomas Ulich,et al.  Evidence for long‐term cooling of the upper atmosphere in ionosonde data , 1997 .

[23]  J. Taubenheim,et al.  Long-term decrease of mesospheric temperature, 1963–1995, inferred from radiowave reflection heights , 1997 .

[24]  Richard J. Rudy,et al.  Fabry Perot observations of helium 10830 Å emission at Millstone Hill , 1996 .

[25]  J. Meriwether,et al.  Evidence for orographic wave heating in the equatorial thermosphere at solar maximum , 1996 .

[26]  A. Semenov,et al.  Long‐term temperature trends in the middle and upper atmosphere , 1996 .

[27]  P. E. Morris,et al.  Observations of V = 1–0 emission from thermospheric nitric oxide by ISAMS , 1993 .

[28]  M. Ross,et al.  Structure in the UV nightglow observed from low Earth orbit , 1992 .

[29]  A. Aikin,et al.  Temperature trends in the lower mesosphere , 1991 .

[30]  Mike Hapgood,et al.  On the Origin of Ripple-type Wave Structure in the OH Nightglow Emission , 1990 .

[31]  Wayne F. J. Evans,et al.  A rocket measurement of the O2 infrared atmospheric (0-0) band emission in the dayglow and a determination of the mesospheric ozone and atomic oxygen densities , 1988 .

[32]  A. T. Stair,et al.  Rocket measurements of the altitude distributions of the hydroxyl airglow. , 1988 .

[33]  V. Letfus,et al.  Quasi-biennial oscillations of the green corona intensity , 1985 .

[34]  N. N. Shefov,et al.  Orographic Disturbances of Upper Atmosphere Emissions , 1984 .

[35]  K. Sakurai Quasi-biennial variation of the solar neutrino flux and solar activity , 1979, Nature.

[36]  F. Roach,et al.  The Light of the Night Sky , 1973 .

[37]  M. Nicolet,et al.  Aeronomic Reactions of Hydrogen and Ozone , 2017 .

[38]  N. N. Shefov Hydroxyl emission of the upper atmosphere—I: The behaviour during a solar cycle, seasons and geomagnetic disturbances , 1969 .

[39]  V. I. Krassovsky Heating of the Upper Atmosphere during Geomagnetic Disturbances , 1968, Nature.

[40]  D. Hunten Spectroscopic studies of the twilight airglow , 1967 .

[41]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[42]  S. Silverman,et al.  A re-examination of Lord Rayleigh's data on the airglow 5577 A(OI) emission , 1964 .

[43]  Y. Gal'perin Proton bombardment in aurora , 1963 .

[44]  V. I. Krassovsky,et al.  Atlas of the airglow spectrum 3000-12400 Å , 1962 .

[45]  N. I. Fedorova Hydroxyl Emission of the Upper Atmosphere. , 1960 .

[46]  E. Manring,et al.  Photometric observations of the 5577 A and 6300 A emissions made during the aurora of February 10–11, 1958 , 1959 .

[47]  A. Vallance Jones,et al.  1Δg-3Σg- O2 Infrared emission band in the twilight airglow spectrum , 1958 .

[48]  D. R. Bates,et al.  The photochemistry of atmospheric water vapor , 1950 .

[49]  A. B. Meinel,et al.  OH Emission Bands in the Spectrum of the Night Sky. II. , 1950 .

[50]  I. Meinel,et al.  OH Emission Bands in the Spectrum of the Night Sky. , 1950 .