Simulating drop-weight impact and compression after impact tests on composite laminates using conventional shell finite elements

Abstract Simulating polymer-based composite structures under low-velocity impact and sequencing compression after impact loading, is a complex problem that requires using well-suited constitutive models and defining advanced finite element capabilities. Therefore, developing simplified and efficient, but sufficiently accurate finite element models to solve such problems, is of interest. Here, a finite element modelling strategy is presented for simulating low-velocity impact and compression after impact tests on composite laminates using Abaqus/Explicit software. The strategy is based on using conventional shell elements and cohesive surfaces. The proper out-of-plane structural response is solved by considering surface elements located on the bottom and top faces of the layers. The key parameters requested for defining the models are concisely described and the values selected are well justified. The accuracy of the modelling strategy is proved by simulating monolithic and rectangular laboratory coupons. The results of the simulations reveal good agreement with most of the experimental data reported.

[1]  Heinz E. Pettermann,et al.  Modelling and simulation of damage and failure in large composite components subjected to impact loads , 2016 .

[2]  M. Donadon,et al.  Numerical prediction of compression after impact behavior of woven composite laminates , 2014 .

[3]  J. Awerbuch,et al.  A Mode I cohesive law characterization procedure for through-the-thickness crack propagation in composite laminates , 2016 .

[4]  E. V. González,et al.  Characterization of the translaminar fracture Cohesive Law , 2016 .

[5]  C. Bouvet,et al.  Numerical simulation of impact and compression after impact ofasymmetrically tapered laminated CFRP , 2016 .

[6]  Robin Olsson,et al.  Delamination buckling: A finite element study with realistic delamination shapes, multiple delaminations and fibre fracture cracks , 2010 .

[7]  Pedro P. Camanho,et al.  Effects of interply hybridization on the damage resistance and tolerance of composite laminates , 2014 .

[8]  Francesco Aymerich,et al.  Finite element modelling of damage induced by low-velocity impact on composite laminates , 2014 .

[9]  S. Hallett,et al.  Barely visible impact damage in scaled composite laminates: Experiments and numerical simulations , 2017 .

[10]  Francesco Caputo,et al.  Impact behaviour of omega stiffened composite panels , 2016 .

[11]  Robin Olsson,et al.  Impact on composite structures , 2004, The Aeronautical Journal (1968).

[12]  M. Pavier,et al.  Finite element prediction of the post-impact compressive strength of fibre composites , 1996 .

[13]  Heinz E. Pettermann,et al.  Failure mechanism based modelling of impact on fabric reinforced composite laminates based on shell elements , 2016 .

[14]  P. Camanho,et al.  Measurement of resistance curves in the longitudinal failure of composites using digital image correlation , 2010 .

[15]  Brian Falzon,et al.  Predicting low-velocity impact damage on a stiffened composite panel , 2010 .

[16]  H. Lee,et al.  Modelling damage growth in composites subjected to impact and compression after impact , 2017 .

[17]  Hao Yan,et al.  Compression-after-impact response of woven fiber-reinforced composites , 2010 .

[18]  H. Suemasu,et al.  A numerical study on compressive behavior of composite plates with multiple circular delaminations considering delamination propagation , 2008 .

[19]  M. Richardson,et al.  Review of low-velocity impact properties of composite materials , 1996 .

[20]  Alastair Johnson,et al.  Influence of delamination on impact damage in composite structures , 2006 .

[21]  Lorenzo Iannucci,et al.  Fracture toughness of the tensile and compressive fibre failure modes in laminated composites , 2006 .

[22]  P. Camanho,et al.  Three-dimensional failure criteria for fiber-reinforced laminates , 2013 .

[23]  R. Olsson,et al.  Damage sequence in thin-ply composite laminates under out-of-plane loading , 2016 .

[24]  Christophe Bouvet,et al.  Low velocity impact modelling in laminate composite panels with discrete interface elements , 2009 .

[25]  E. V. González,et al.  A continuum constitutive model for the simulation of fabric-reinforced composites , 2014 .

[26]  J. Llorca,et al.  Physically-sound simulation of low-velocity impact on fiber reinforced laminates , 2016 .

[27]  Silvestre T. Pinho,et al.  Translaminar fracture toughness testing of composites: A review , 2012 .

[28]  Brian Falzon,et al.  Predicting low velocity impact damage and Compression-After-Impact (CAI) behaviour of composite laminates , 2015 .

[29]  Pedro P. Camanho,et al.  A continuum damage model for composite laminates: Part I - Constitutive model , 2007 .

[30]  E. V. González,et al.  Translaminar fracture toughness of interply hybrid laminates under tensile and compressive loads , 2017 .

[31]  Y. Liv A contribution to the understanding of compression after impact of composite laminates , 2017 .

[32]  A. Wagih,et al.  A quasi-static indentation test to elucidate the sequence of damage events in low velocity impacts on composite laminates , 2016 .

[33]  Serge Abrate,et al.  Impact on Composite Structures , 1998 .

[34]  Pedro P. Camanho,et al.  Failure Criteria for FRP Laminates , 2005 .

[35]  Raimund Rolfes,et al.  Modeling the inelastic deformation and fracture of polymer composites – Part I: Plasticity model , 2013 .

[36]  Wolfgang G. Knauss,et al.  Observation of damage growth in compressively loaded laminates , 1983 .

[37]  Aniello Riccio,et al.  A Numerical/Experimental Study on the Impact and CAI Behaviour of Glass Reinforced Compsite Plates , 2018, Applied Composite Materials.

[38]  P. Camanho,et al.  A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites , 2009 .

[39]  Alastair Johnson,et al.  Computational methods for predicting impact damage in composite structures , 2001 .

[40]  Pedro P. Camanho,et al.  A continuum damage model for composite laminates: Part II – Computational implementation and validation , 2007 .

[41]  M. Benzeggagh,et al.  Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus , 1996 .

[42]  John Morton,et al.  The impact resistance of composite materials — a review , 1991 .

[43]  H. Suemasu,et al.  Buckling and Post-buckling Behavior if Composite Plates Containing Multiple Delaminations , 2009 .

[44]  E. V. González,et al.  Low velocity impact and compression after impact simulation of thin ply laminates , 2018, Composites Part A: Applied Science and Manufacturing.

[45]  Christophe Bouvet,et al.  Low velocity impact modeling in composite laminates capturing permanent indentation , 2012 .

[46]  Raimund Rolfes,et al.  Modeling the inelastic deformation and fracture of polymer composites – Part II: Smeared crack model , 2013 .

[47]  Xiongqi Peng,et al.  Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact , 2016 .

[48]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[49]  G. Alfano On the influence of the shape of the interface law on the application of cohesive-zone models , 2006 .

[50]  Stephen R Hallett,et al.  A numerical study on impact and compression after impact behaviour of variable angle tow laminates , 2013 .

[51]  Constantinos Soutis,et al.  Modelling impact damage in composite laminates: A simulation of intra- and inter-laminar cracking , 2014 .

[52]  D. Trias,et al.  Specimen geometry and specimen size dependence of the R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}$ , 2017, International Journal of Fracture.

[53]  Albert Turon,et al.  Cohesive zone length of orthotropic materials undergoing delamination , 2016 .

[54]  Pedro P. Camanho,et al.  Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear , 2006 .

[55]  Christophe Bouvet,et al.  Validation of low velocity impact modelling on different stacking sequences of CFRP laminates and influence of fibre failure , 2013 .

[56]  Christophe Bouvet,et al.  Failure analysis of CFRP laminates subjected to compression after impact: FE simulation using discrete interface elements , 2013 .

[57]  Zafer Gürdal,et al.  Low-velocity impact damage on dispersed stacking sequence laminates. Part II: Numerical simulations , 2009 .

[58]  Pedro P. Camanho,et al.  Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness , 2010 .

[59]  P. Maimí,et al.  Compact tension specimen for orthotropic materials , 2014 .

[60]  D. Trias,et al.  Specimen geometry and specimen size dependence of the $${\mathcal {R}}$$R-curve and the size effect law from a cohesive model point of view , 2017 .

[61]  Pedro P. Camanho,et al.  Effective simulation of delamination in aeronautical structures using shells and cohesive elements , 2008 .

[62]  Pedro P. Camanho,et al.  Simulation of drop-weight impact and compression after impact tests on composite laminates , 2012 .

[63]  Lin Ye,et al.  Role of matrix resin in delamination onset and growth in composite laminates , 1988 .

[64]  Pedro P. Camanho,et al.  An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models , 2007 .

[65]  J. Vrbka,et al.  On the applicability of simple shapes of delaminations in buckling analyses , 2011 .

[66]  A. D. Luca,et al.  Numerical study for the structural analysis of composite laminates subjected to low velocity impact , 2014 .

[67]  Robin Olsson,et al.  Mass criterion for wave controlled impact response of composite plates , 2000 .