Solving the ordered one-median problem in the plane

In this paper, we propose a general approach solution method for the single facility ordered median problem in the plane. All types of weights (non-negative, non-positive, and mixed) are considered. The big triangle small triangle approach is used for the solution. Rigorous and heuristic algorithms are proposed and extensively tested on eight different problems with excellent results.

[1]  A. Naumovich On a Finite Volume Discretization of the Three-dimensional Biot Poroelasticity , 2006 .

[2]  T. Hanne Eine Übersicht zum Scheduling von Baustellen , 2005 .

[3]  D. Kehrwald Parallel lattice Boltzmann simulation of complex flows , 2004 .

[4]  A. Becker A Review on Image Distortion Measures , 2000 .

[5]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[6]  Horst W. Hamacher,et al.  Inverse Radiation Therapy Planning: A Multiple Objective Optimisation Approach , 1999 .

[7]  M. Junk On the Construction of Discrete Equilibrium Distributions for Kinetic Schemes , 1999 .

[8]  Kokichi Sugihara,et al.  A robust Topology-Oriented Incremental algorithm for Voronoi diagrams , 1994, Int. J. Comput. Geom. Appl..

[9]  J. Orlik Homogenization for contact problems with periodically rough surfaces , 2004 .

[10]  J. Orlik Homogenization for viscoelasticity of the integral type with aging and shrinkage , 1998 .

[11]  Philip M. Morse,et al.  Methods of Mathematical Physics , 1947, The Mathematical Gazette.

[12]  S. Kruse,et al.  On the Pricing of Forward Starting Options under Stochastic Volatility , 2003 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  H. Trinkaus,et al.  knowCube for MCDM – Visual and Interactive Support for Multicriteria Decision Making , 2003 .

[15]  Frank-Thomas Lentes,et al.  Three-dimensional radiative heat transfer in glass cooling processes , 1998 .

[16]  Justo Puerto,et al.  Algorithmic results for ordered median problems , 2002, Oper. Res. Lett..

[17]  H. Neunzert,et al.  Mathematics as a Technology: Challenges for the next 10 Years , 2004 .

[19]  A. Zemitis On interaction of a liquid film with an obstacle , 2002 .

[20]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[21]  Justo Puerto,et al.  A flexible approach to location problems , 2000, Math. Methods Oper. Res..

[22]  Kazuo Murota,et al.  IMPROVEMENTS OF THE INCREMENTAL METHOD FOR THE VORONOI DIAGRAM WITH COMPUTATIONAL COMPARISON OF VARIOUS ALGORITHMS , 1984 .

[23]  N. Ettrich Generation of surface elevation models for urban drainage simulation , 2005 .

[24]  Anton Winterfeld,et al.  Application of general semi-infinite programming to lapidary cutting problems , 2008, Eur. J. Oper. Res..

[25]  M. Shirosaki Another proof of the defect relation for moving targets , 1991 .

[26]  Said Salhi,et al.  Facility Location: A Survey of Applications and Methods , 1996 .

[27]  H. Neunzert »Denn nichts ist für den Menschen als Menschen etwas wert, was er nicht mit Leidenschaft tun kann« , 2001 .

[28]  Jörg Wenzel,et al.  A Unified Approach to Credit Default Swaption and Constant Maturity Credit Default Swap Valuation , 2006 .

[29]  Zvi Drezner,et al.  Equity Models in Planar Location , 2006, Comput. Manag. Sci..

[30]  M. Krekel Optimal Portfolios With A Loan Dependent Credit Spread , 2002 .

[31]  Zvi Drezner,et al.  Facility location - applications and theory , 2001 .

[32]  J. Linn The Folgar–Tucker Model as a Differential Algebraic System for Fiber Orientation Calculation , 2005 .

[33]  Horst W. Hamacher,et al.  Inverse Radiation Therapy Planning: A Multiple Objective Optimisation Approach , 1999 .

[34]  J. Linn On the Frame — Invariant Description of the Phase Space of the Folgar–Tucker Equation , 2004 .

[35]  V. Starikovicius,et al.  The multiphase flow and heat transfer in porous media , 2003 .

[36]  D. Hearn,et al.  Geometrical Solutions for Some Minimax Location Problems , 1972 .

[37]  Zvi Drezner,et al.  A General Global Optimization Approach for Solving Location Problems in the Plane , 2007, J. Glob. Optim..

[38]  Zvi Drezner,et al.  The Big Triangle Small Triangle Method for the Solution of Nonconvex Facility Location Problems , 2004, Oper. Res..

[39]  Th. Hanne,et al.  Applying multiobjective evolutionary algorithms in industrial projects , 2006 .

[40]  S. Halim,et al.  Wild bootstrap tests for comparing signals and images , 2007 .

[41]  Zvi Drezner,et al.  The expropriation location problem , 2003, J. Oper. Res. Soc..

[42]  R. Lazarov,et al.  On convergence of certain finite volume difference discretizations for 1D poroelasticity interface problems , 2007 .