Biochemical parameter estimation vs. benchmark functions: A comparative study of optimization performance and representation design
暂无分享,去创建一个
Giancarlo Mauri | Marco S. Nobile | Paolo Cazzaniga | Daniela Besozzi | Leonardo Rundo | Andrea Tangherloni | Simone Spolaor | G. Mauri | D. Besozzi | P. Cazzaniga | L. Rundo | A. Tangherloni | S. Spolaor
[1] Michèle Sebag,et al. Extending Population-Based Incremental Learning to Continuous Search Spaces , 1998, PPSN.
[2] Nikolaus Hansen,et al. The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.
[3] Eberhard O. Voit,et al. 150 Years of the Mass Action Law , 2015, PLoS Comput. Biol..
[4] Xin-She Yang,et al. A literature survey of benchmark functions for global optimisation problems , 2013, Int. J. Math. Model. Numer. Optimisation.
[5] Riccardo Poli,et al. Evolving Problems to Learn About Particle Swarm Optimizers and Other Search Algorithms , 2006, IEEE Transactions on Evolutionary Computation.
[6] Roger W. Elliott. Kiviat-graphs as a means for displaying performance data for on-line retrieval systems , 1976, J. Am. Soc. Inf. Sci..
[7] Neema Jamshidi,et al. Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. , 2010, Biophysical journal.
[8] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[9] Ajith Abraham,et al. Turbulent Particle Swarm Optimization Using Fuzzy Parameter Tuning , 2009, Foundations of Computational Intelligence.
[10] Kenneth W. Kolence,et al. Software unit profiles & Kiviat figures , 1973, PERV.
[11] David H. Wolpert,et al. What makes an optimization problem hard? , 1995, Complex..
[12] Marco S. Nobile,et al. The impact of particles initialization in PSO: Parameter estimation as a case in point , 2015, 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).
[13] Fei He,et al. Sensitivity analysis and robust experimental design of a signal transduction pathway system , 2008 .
[14] Andries Petrus Engelbrecht,et al. Inertia weight control strategies for particle swarm optimization , 2016, Swarm Intelligence.
[15] James Kennedy,et al. Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.
[16] J. Kämpf,et al. A comparison of global optimization algorithms with standard benchmark functions and real-world applications using EnergyPlus , 2009 .
[17] Carmen G. Moles,et al. Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.
[18] Giancarlo Mauri,et al. Proactive Particles in Swarm Optimization: A self-tuning algorithm based on Fuzzy Logic , 2015, 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
[19] Giancarlo Mauri,et al. Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization , 2017, Swarm Evol. Comput..
[20] Daniela Besozzi,et al. Reaction-Based Models of Biochemical Networks , 2016, CiE.
[21] H. Kitano. Systems Biology: A Brief Overview , 2002, Science.
[22] Johannes M. Dieterich,et al. Empirical review of standard benchmark functions using evolutionary global optimization , 2012, ArXiv.
[23] Changhe Li,et al. A Generalized Approach to Construct Benchmark Problems for Dynamic Optimization , 2008, SEAL.
[24] David H. Wolpert,et al. No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..
[25] Guanrong Chen,et al. Evolving benchmark functions using kruskal-wallis test , 2018, GECCO.
[26] Janez Demsar,et al. Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..
[27] Fabrice Rossi,et al. Mean Absolute Percentage Error for regression models , 2016, Neurocomputing.
[28] Andreas Zell,et al. Modeling metabolic networks in C . glutamicum : a comparison of rate laws in combination with various parameter optimization strategies , 2009 .
[29] Marco S. Nobile,et al. Computational Strategies for a System-Level Understanding of Metabolism , 2014, Metabolites.
[30] Marcos L. Corazza,et al. A comparison among stochastic optimization algorithms for parameter estimation of biochemical kinetic models , 2013, Appl. Soft Comput..
[31] Jing J. Liang,et al. Novel composition test functions for numerical global optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..
[32] Ioan Cristian Trelea,et al. The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..
[33] Nikolaus Hansen,et al. Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.
[34] Giancarlo Mauri,et al. GPU-accelerated simulations of mass-action kinetics models with cupSODA , 2014, The Journal of Supercomputing.
[35] Bernard Grossman,et al. A Comparison of Global Optimization Methods for the Design of a High-speed Civil Transport , 2001, J. Glob. Optim..
[36] Dervis Karaboga,et al. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..
[37] Ming Yang,et al. An Open Framework for Constructing Continuous Optimization Problems , 2019, IEEE Transactions on Cybernetics.
[38] S. Bhat,et al. Modeling and analysis of mass-action kinetics , 2009, IEEE Control Systems.
[39] P. N. Suganthan,et al. Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.
[40] Risto Miikkulainen,et al. A Probabilistic Reformulation of No Free Lunch: Continuous Lunches Are Not Free , 2016, Evolutionary Computation.
[41] Yang Lou,et al. On constructing alternative benchmark suite for evolutionary algorithms , 2019, Swarm Evol. Comput..
[42] Olivier Teytaud,et al. Continuous lunches are free! , 2007, GECCO '07.
[43] Giancarlo Mauri,et al. cupSODA: A CUDA-Powered Simulator of Mass-Action Kinetics , 2013, PaCT.
[44] Marco S. Nobile,et al. Proactive Particles in Swarm Optimization: A settings-free algorithm for real-parameter single objective optimization problems , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).
[45] Martin Pelikan,et al. An introduction and survey of estimation of distribution algorithms , 2011, Swarm Evol. Comput..
[46] Francisco Herrera,et al. A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.
[47] Marco S. Nobile,et al. Dilation Functions in Global Optimization , 2019, 2019 IEEE Congress on Evolutionary Computation (CEC).
[48] Rainer Storn,et al. Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..
[49] Hao Wang,et al. Towards a theory-guided benchmarking suite for discrete black-box optimization heuristics: profiling (1 + λ) EA variants on onemax and leadingones , 2018, GECCO.
[50] Marcus Gallagher,et al. Towards improved benchmarking of black-box optimization algorithms using clustering problems , 2016, Soft Comput..
[51] Andries Petrus Engelbrecht,et al. A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..
[52] Giancarlo Mauri,et al. Computational Intelligence for Parameter Estimation of Biochemical Systems , 2018, 2018 IEEE Congress on Evolutionary Computation (CEC).
[53] R. Eberhart,et al. Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).
[54] Marco S. Nobile,et al. Reboot strategies in particle swarm optimization and their impact on parameter estimation of biochemical systems , 2017, 2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).
[55] Marco Beccuti,et al. Efficient and Settings-Free Calibration of Detailed Kinetic Metabolic Models with Enzyme Isoforms Characterization , 2018, CIBB.
[56] Olivier Teytaud,et al. Continuous Lunches Are Free Plus the Design of Optimal Optimization Algorithms , 2010, Algorithmica.
[57] J. A. Lozano,et al. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .
[58] Marc Parizeau,et al. DEAP: evolutionary algorithms made easy , 2012, J. Mach. Learn. Res..