Probing the surface states in bi2se3 using the shubnikov-de haas effect

Shubnikov-de Haas (SdH) oscillations are observed in Bi2Se3 flakes with high carrier concentration and low bulk mobility. These oscillations probe the protected surface states and enable us to extract their carrier concentration, effective mass and Dingle temperature. The Fermi momentum obtained is in agreement with angle resolved photoemission spectroscopy (ARPES) measurements performed on crystals from the same batch. We study the behavior of the Berry phase as a function of magnetic field. The standard theoretical considerations fail to explain the observed behavior.

[1]  Tanmoy Das,et al.  Superconductivity and topological Fermi surface transitions in electron-doped cuprates near optimal doping , 2007, 0711.1504.

[2]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[3]  J. Woollam,et al.  Electronic properties of Bi2Se3 crystals , 1974 .

[4]  Z. Ren,et al.  Angular-dependent oscillations of the magnetoresistance in Bi 2 Se 3 due to the three-dimensional bulk Fermi surface , 2010, 1001.5353.

[5]  Ming Liu,et al.  Quantum interference in macroscopic crystals of nonmetallic Bi2Se3. , 2009, Physical review letters.

[6]  Andrei B. Sushkov,et al.  Strong surface scattering in ultrahigh mobility Bi2Se3 topological insulator crystals , 2010, 1003.2382.

[7]  J Chen,et al.  Gate-voltage control of chemical potential and weak antilocalization in Bi₂Se₃. , 2010, Physical review letters.

[8]  Ross D. McDonald,et al.  Bulk Fermi surface coexistence with Dirac surface state in Bi 2 Se 3 : A comparison of photoemission and Shubnikov–de Haas measurements , 2010, 1001.4050.

[9]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[10]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[11]  Richard L J Qiu,et al.  Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. , 2011, ACS nano.

[12]  F. Meier,et al.  A tunable topological insulator in the spin helical Dirac transport regime , 2009, Nature.

[13]  S. Cheong,et al.  Thickness-dependent bulk properties and weak antilocalization effect in topological insulator Bi 2 Se 3 , 2011, 1104.0913.

[14]  R J Cava,et al.  Bulk band gap and surface state conduction observed in voltage-tuned crystals of the topological insulator Bi2Se3. , 2010, Physical review letters.

[15]  Yoichi Ando,et al.  Large bulk resistivity and surface quantum oscillations in the topological insulator Bi 2 Te 2 Se , 2010, 1011.2846.

[16]  D. Shoenberg,et al.  Magnetic Oscillations in Metals , 1984 .

[17]  Superconductivity and Non-Metallicity Induced by Doping the Topological Insulators Bi 2 Se 3 and Bi 2 Te 3 , 2010, 1006.0317.

[18]  Y. Ando,et al.  Berry phase of nonideal Dirac fermions in topological insulators , 2011, 1103.3096.

[19]  Xi Dai,et al.  Crossover of the three-dimensional topological insulator Bi 2 Se 3 to the two-dimensional limit , 2010 .

[20]  James Analytis,et al.  Two-dimensional surface state in the quantum limit of a topological insulator , 2010 .

[21]  Xiao-Liang Qi,et al.  Aharonov-Bohm interference in topological insulator nanoribbons. , 2009, Nature materials.

[22]  H. Nakagawa,et al.  Conduction-band structure of Bi 2-x Sb x Se 3 mixed crystals by Shubnikov-de Haas and cyclotron resonance measurements in high magnetic fields , 1999 .

[23]  Dong Qian,et al.  Topological surface states protected from backscattering by chiral spin texture , 2009, Nature.