Synthesis and electrochemical and spectroscopic characterization of biicosahedral Au25 clusters.

The synthesis and electrochemical and spectroscopic characterization of biicosahedral Au(25) clusters with a composition of [Au(25)(PPh(3))(10)(thiolate)(5)Cl(2)](2+) are described. The biicosahedral Au(25) clusters protected with various types of thiol ligands including alkanethiols, 2-phenylethanethiol, 11-mercaptoundecanoic acid, and 11-mercapto-1-undecanol were synthesized in high yields using a one-step, one-phase procedure in which Au(PPh(3))Cl is reduced with tert-butylamine-borane in the presence of the thiol ligand in a 3:1 v/v chloroform/ethanol solution. All biicosahedral Au(25) clusters prepared exhibit characteristic optical absorption and photoluminescence properties. The emission energy is found to be substantially smaller than the optical absorption energy gap of 1.82 eV, indicating a subgap energy luminescence. The electrochemical HOMO-LUMO gap (~1.54 eV) of the clusters is also substantially smaller than the optical absorption energy gap but rather similar to the emission energy. These electrochemical and optical properties of the biicosahedral Au(25) clusters are distinctly different from those of the Au(25)(thiolate)(18) clusters.

[1]  H. Shim,et al.  Size-Controlled Electron Transfer and Photocatalytic Activity of ZnO–Au Nanoparticle Composites , 2011 .

[2]  Dongil Lee,et al.  Size control in the synthesis of 1-6 nm gold nanoparticles via solvent-controlled nucleation. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[3]  R. Jin,et al.  Crystal structures of Au2 complex and Au25 nanocluster and mechanistic insight into the conversion of polydisperse nanoparticles into monodisperse Au25 nanoclusters. , 2011, Inorganic chemistry.

[4]  S. Kumar,et al.  Electrochemical sensing using quantum-sized gold nanoparticles. , 2011, Analytical chemistry.

[5]  R. Jin,et al.  Ultrafast Relaxation Dynamics of Rod-Shaped 25-Atom Gold Nanoclusters , 2011 .

[6]  T. Goodson,et al.  Unique Ultrafast Visible Luminescence in Monolayer-Protected Au25 Clusters , 2010 .

[7]  Joseph F. Parker,et al.  The story of a monodisperse gold nanoparticle: Au25L18. , 2010, Accounts of chemical research.

[8]  R. Jin,et al.  On the ligand's role in the fluorescence of gold nanoclusters. , 2010, Nano letters.

[9]  R. Jin,et al.  Quantum sized, thiolate-protected gold nanoclusters. , 2010, Nanoscale.

[10]  R. Jin,et al.  Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of alpha,beta-unsaturated ketones and aldehydes. , 2010, Angewandte Chemie.

[11]  R. Jin,et al.  Conversion of Polydisperse Au Nanoparticles into Monodisperse Au25 Nanorods and Nanospheres , 2009 .

[12]  Wei Chen,et al.  Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. , 2009, Angewandte Chemie.

[13]  R. Gil,et al.  Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. , 2009, Journal of the American Chemical Society.

[14]  R. Whetten,et al.  A unified view of ligand-protected gold clusters as superatom complexes , 2008, Proceedings of the National Academy of Sciences.

[15]  Royce W Murray,et al.  Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. , 2008, Chemical reviews.

[16]  Y. Negishi,et al.  Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. , 2008, Journal of the American Chemical Society.

[17]  G. Schatz,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[18]  R. Whetten,et al.  On the structure of thiolate-protected Au25. , 2008, Journal of the American Chemical Society.

[19]  R. Murray,et al.  Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. , 2008, Journal of the American Chemical Society.

[20]  R. Jin,et al.  Kinetically controlled, high-yield synthesis of Au25 clusters. , 2008, Journal of the American Chemical Society.

[21]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[22]  K. Nobusada,et al.  Oligomeric Gold Clusters with Vertex-Sharing Bi- and Triicosahedral Structures , 2007 .

[23]  Dongil Lee,et al.  Size-controlled interparticle charge transfer between TiO2 and quantized capacitors. , 2007, Journal of the American Chemical Society.

[24]  Dongil Lee,et al.  Facile preparative route to alkanethiolate-coated Au38 nanoparticles: postsynthesis core size evolution. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[25]  Y. Negishi,et al.  Biicosahedral Gold Clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n = 2−18): A Stepping Stone to Cluster-Assembled Materials , 2007 .

[26]  R. Murray,et al.  Poly(ethylene glycol) ligands for high-resolution nanoparticle mass spectrometry. , 2007, Journal of the American Chemical Society.

[27]  R. Murray,et al.  Sub-nanometer Au monolayer-protected clusters exhibiting molecule-like electronic behavior: quantitative high-angle annular dark-field scanning transmission electron microscopy and electrochemical characterization of clusters with precise atomic stoichiometry. , 2006, The journal of physical chemistry. B.

[28]  N. Zheng,et al.  One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. , 2006, Journal of the American Chemical Society.

[29]  Dongil Lee,et al.  Electron hopping dynamics in Au38 nanoparticle langmuir monolayers at the air/water interface. , 2006, Journal of the American Chemical Society.

[30]  R. Whetten,et al.  All-aromatic, nanometer-scale, gold-cluster thiolate complexes. , 2005, Journal of the American Chemical Society.

[31]  R. Murray,et al.  Reaction of Au55(PPh3)12Cl6 with thiols yields thiolate monolayer protected Au75 clusters , 2005 .

[32]  Katsuyuki Nobusada,et al.  Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. , 2005, Journal of the American Chemical Society.

[33]  R. Murray,et al.  Near-IR luminescence of monolayer-protected metal clusters. , 2005, Journal of the American Chemical Society.

[34]  R. Murray,et al.  Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. , 2004, Journal of the American Chemical Society.

[35]  M. G. Warner,et al.  Ligand Exchange Reactions Yield Subnanometer, Thiol-Stabilized Gold Particles with Defined Optical Transitions , 2002 .

[36]  Robert L. Whetten,et al.  Visible to Infrared Luminescence from a 28-Atom Gold Cluster , 2002 .

[37]  R. Murray,et al.  Visible Luminescence of Water-Soluble Monolayer-Protected Gold Clusters , 2001 .

[38]  A. Bard,et al.  Electrochemistry of CdS nanoparticles: a correlation between optical and electrochemical band gaps. , 2001, Journal of the American Chemical Society.

[39]  A. Zunger,et al.  Pseudopotential calculations of electron and hole addition spectra of InAs, InP, and Si quantum dots , 2000 .

[40]  A. Zunger,et al.  Addition energies and quasiparticle gap of CdSe nanocrystals , 2000 .

[41]  U. Banin,et al.  Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots , 1999, Nature.

[42]  R. Murray,et al.  Gold nanoelectrodes of varied size: transition to molecule-like charging , 1998, Science.

[43]  N. Serpone,et al.  Photophysics of Thiacarbocyanine Dyes: Relaxation Dynamics in a Homologous Series of Thiacarbocyanines , 1997 .

[44]  Xiaobo Shi,et al.  Pure gold cluster of 1:9:9:1:9:9:1 layered structure: a novel 39-metal-atom cluster [(Ph3P)14Au39Cl6]Cl2 with an interstitial gold atom in a hexagonal antiprismatic cage , 1992 .

[45]  Shaowei Chen,et al.  Surface Manipulation of the Electronic Energy of Subnanometer-Sized Gold Clusters: An Electrochemical and Spectroscopic Investigation , 2003 .