Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits

With the current rate of progress in quantum computing technologies, systems with more than 50 qubits will soon become reality. Computing ideal quantum state amplitudes for devices of such and larger sizes is a fundamental step to assess their fidelity, but memory requirements for such calculations on classical computers grow exponentially. In this study, we present a new approach for this task that extends the boundaries of what can be computed on a classical system. We present results obtained from a calculation of the complete set of output amplitudes of a universal random circuit with depth 27 in a 2D lattice of $7 \times 7$ qubits, and an arbitrarily selected slice of $2^{37}$ amplitudes of a universal random circuit with depth 23 in a 2D lattice of $8 \times 7$ qubits. Combining our methodology with other decomposition techniques found in the literature, we show that we can simulate $7 \times 7$-qubit random circuits to arbitrary depth by leveraging secondary storage. These calculations were thought to be impossible due to memory requirements; our methodology requires memory within the limits of existing classical computers.

[1]  Paul Adrien Maurice Dirac,et al.  A new notation for quantum mechanics , 1939, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  C. Porter,et al.  Fluctuations of Nuclear Reaction Widths , 1956 .

[3]  R. Bellman Dynamic programming. , 1957, Science.

[4]  A. W. Joshi Matrices and tensors in physics , 1975 .

[5]  Charles L. Lawson,et al.  Basic Linear Algebra Subprograms for Fortran Usage , 1979, TOMS.

[6]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[7]  R. Feynman Simulating physics with computers , 1999 .

[8]  Anthony Skjellum,et al.  Using MPI - portable parallel programming with the message-parsing interface , 1994 .

[9]  D. Bienstock,et al.  Algorithmic Implications of the Graph Minor Theorem , 1995 .

[10]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[11]  L. Dagum,et al.  OpenMP: an industry standard API for shared-memory programming , 1998 .

[12]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[13]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[14]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[15]  Contraction and Treewidth Lower Bounds , 2006, J. Graph Algorithms Appl..

[16]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[17]  Amith R. Mamidala,et al.  MPI Collective Communications on The Blue Gene/P Supercomputer: Algorithms and Optimizations , 2009, 2009 17th IEEE Symposium on High Performance Interconnects.

[18]  M. Aguado,et al.  Explicit tensor network representation for the ground states of string-net models , 2008, 0809.2393.

[19]  E. Haber,et al.  Numerical methods for the design of large-scale nonlinear discrete ill-posed inverse problems , 2010 .

[20]  L Frunzio,et al.  High-fidelity readout in circuit quantum electrodynamics using the Jaynes-Cummings nonlinearity. , 2010, Physical review letters.

[21]  John Preskill,et al.  Quantum computing and the entanglement frontier , 2012, 1203.5813.

[22]  R. A. Haring,et al.  Design of the IBM Blue Gene/Q compute chip , 2013 .

[23]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[24]  IBM Blue Gene team,et al.  Design of the IBM Blue Gene/Q Compute chip , 2013, IBM J. Res. Dev..

[25]  Jack J. Dongarra,et al.  Beyond the CPU: Hardware Performance Counter Monitoring on Blue Gene/Q , 2013, ISC.

[26]  Amith R. Mamidala,et al.  Optimization of MPI collective operations on the IBM Blue Gene/Q supercomputer , 2014, Int. J. High Perform. Comput. Appl..

[27]  Norbert Schuch,et al.  Characterizing Topological Order with Matrix Product Operators , 2014, Annales Henri Poincaré.

[28]  John F. Stanton,et al.  A massively parallel tensor contraction framework for coupled-cluster computations , 2014, J. Parallel Distributed Comput..

[29]  Jay M. Gambetta,et al.  Building logical qubits in a superconducting quantum computing system , 2015, 1510.04375.

[30]  Scott Aaronson,et al.  Complexity-Theoretic Foundations of Quantum Supremacy Experiments , 2016, CCC.

[31]  Christina Freytag,et al.  Using Mpi Portable Parallel Programming With The Message Passing Interface , 2016 .

[32]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[33]  Georg Stadler,et al.  A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems , 2014, SIAM J. Sci. Comput..

[34]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[35]  H. Neven,et al.  Simulation of low-depth quantum circuits as complex undirected graphical models , 2017, 1712.05384.

[36]  David Poulin,et al.  Tensor-Network Simulations of the Surface Code under Realistic Noise. , 2016, Physical review letters.

[37]  Davide Castelvecchi,et al.  Quantum computers ready to leap out of the lab in 2017 , 2017, Nature.

[38]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[39]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[40]  March,et al.  Quantum Volume , 2017 .

[41]  Andrew W. Cross,et al.  Open Quantum Assembly Language , 2017, 1707.03429.

[42]  Thomas Häner,et al.  0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit , 2017, SC17: International Conference for High Performance Computing, Networking, Storage and Analysis.

[43]  Elham Kashefi,et al.  Verification of Quantum Computation: An Overview of Existing Approaches , 2017, Theory of Computing Systems.

[44]  Alán Aspuru-Guzik,et al.  qTorch: The quantum tensor contraction handler , 2017, PloS one.

[45]  Xia Yang,et al.  64-qubit quantum circuit simulation. , 2018, Science bulletin.

[46]  Yaoyun Shi,et al.  Classical Simulation of Intermediate-Size Quantum Circuits , 2018, 1805.01450.