Flat tori, lattices and bounds for commutative group codes

We show that commutative group spherical codes in Rn, as introduced by D. Slepian, are directly related to flat tori and quotients of lattices. As consequence of this view, we derive new results on the geometry of these codes and an upper bound for their cardinality in terms of minimum distance and the maximum center density of lattices and general spherical packings in the half dimension of the code. This bound is tight in the sense it can be arbitrarily approached in any dimension. Examples of this approach and a comparison of this bound with Union and Rankin bounds for general spherical codes is also presented.

[1]  Henry Cohn,et al.  New upper bounds on sphere packings I , 2001, math/0110009.

[2]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[3]  Sueli I. Rodrigues Costa,et al.  Upper bounds for a Commutative Group Code , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.

[4]  Giuseppe Caire,et al.  Linear block codes over cyclic groups , 1995, IEEE Trans. Inf. Theory.

[5]  Danyo Danev,et al.  Upper bounds on the minimum distance of spherical codes , 1996, IEEE Trans. Inf. Theory.

[6]  Ingemar Ingemarsson Commutative group codes for the Gaussian channel , 1973, IEEE Trans. Inf. Theory.

[7]  Ezio Biglieri,et al.  On the existence of group codes for the Gaussian channel , 1972, IEEE Trans. Inf. Theory.

[8]  G. David Forney,et al.  Geometrically uniform codes , 1991, IEEE Trans. Inf. Theory.

[9]  H. Coxeter Arrangements of equal spheres in non-Euclidean spaces , 1954 .

[10]  L. Fejes Über die dichteste Kugellagerung , 1942 .

[11]  D. Slepian Group codes for the Gaussian channel , 1968 .

[12]  C. A. Rogers The Packing of Equal Spheres , 1958 .

[13]  K. Böröczky Packing of spheres in spaces of constant curvature , 1978 .

[14]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[15]  V. Zinoviev,et al.  Codes on euclidean spheres , 2001 .

[16]  R. Rankin The Closest Packing of Spherical Caps in n Dimensions , 1955, Proceedings of the Glasgow Mathematical Association.

[17]  Sueli I. Rodrigues Costa,et al.  Graphs, tessellations, and perfect codes on flat tori , 2004, IEEE Transactions on Information Theory.

[18]  Ezio Biglieri,et al.  Cyclic-group codes for the Gaussian channel (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[19]  Hans-Andrea Loeliger,et al.  Signal sets matched to groups , 1991, IEEE Trans. Inf. Theory.

[20]  Sueli I. Rodrigues Costa,et al.  Curves on a sphere, shift-map dynamics, and error control for continuous alphabet sources , 2003, IEEE Transactions on Information Theory.

[21]  E. Biglieri,et al.  Cyclic-group codes for the Gaussian channel , 1976 .