Sensor Radar for Object Tracking

Precise localization and tracking of moving objects is of great interest for a variety of emerging applications including the Internet-of-Things (IoT). The localization and tracking tasks are challenging in harsh wireless environments, such as indoor ones, especially when objects are not equipped with dedicated tags (noncollaborative). The problem of detecting, localizing, and tracking noncollaborative objects within a limited area has often been undertaken by exploiting a network of radio sensors, scanning the zone of interest through wideband radio signals to create a radio image of the objects. This paper presents a sensor network for radio imaging (sensor radar) along with all of the signal processing steps necessary to achieve highaccuracy objects tracking in harsh propagation environments. The described sensor radar is based on the impulse radio (IR) ultrawideband (UWB) technology, entailing the transmission of very short duration pulses. Experimental results with actual UWB signals in indoor environments confirm the sensor radar’s potential in IoT applications.

[1]  Moe Z. Win,et al.  Fundamental Limits of Wideband Localization— Part II: Cooperative Networks , 2010, IEEE Transactions on Information Theory.

[2]  Xia Li,et al.  Demonstration of cognitive radar for target localization under interference , 2014, IEEE Transactions on Aerospace and Electronic Systems.

[3]  Yichuan Yang,et al.  Antenna placement of multistatic radar system with detection and localization performance , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[4]  Alain Gaugue,et al.  Through the wall detection and localization of a moving target with a bistatic UWB radar system , 2010, The 7th European Radar Conference.

[5]  Moe Z. Win,et al.  Wideband diversity in multipath channels with nonuniform power dispersion profiles , 2006, IEEE Transactions on Wireless Communications.

[6]  Thanawat Thiasiriphet,et al.  Particle filtering for UWB radar applications , 2011, 2011 IEEE International Conference on Ultra-Wideband (ICUWB).

[7]  Moe Z. Win,et al.  A stochastic geometry approach to coexistence in heterogeneous wireless networks , 2009, IEEE Journal on Selected Areas in Communications.

[8]  Hüseyin Arslan,et al.  Searchback Algorithms for TOA Estimation in Non-coherent Low-rate IR-UWB Systems , 2009, Wirel. Pers. Commun..

[9]  Marco Lops,et al.  Analysis of the excision CFAR detector in the presence of fluctuating targets , 1989 .

[10]  Yuan He,et al.  Ultra-wideband multistatic tracking of human targets , 2013 .

[11]  Moe Z. Win,et al.  Sensor Radar Networks for Indoor Tracking , 2014, IEEE Wireless Communications Letters.

[12]  V. Chernyak Multisite Ultra-Wideband Radar Systems with Information Fusion : Some Principal Features , 2004 .

[13]  Marco Lops,et al.  Scan-by-scan averaging CFAR , 1989 .

[14]  Dusan Kocur,et al.  UWB radar signal processing for through wall tracking of multiple moving targets , 2010, The 7th European Radar Conference.

[15]  Dusan Kocur,et al.  Multiple moving person tracking by UWB sensors: the effect of mutual shielding persons and methods reducing its impacts , 2017, EURASIP J. Wirel. Commun. Netw..

[16]  Bharat Gupta,et al.  FM-UWB for Communications and Radar in Medical Applications , 2009, Wirel. Pers. Commun..

[17]  G.B. Giannakis,et al.  Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks , 2005, IEEE Signal Processing Magazine.

[18]  Pierfrancesco Lombardo,et al.  WiFi-Based Passive Bistatic Radar: Data Processing Schemes and Experimental Results , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[19]  Moe Z. Win,et al.  On the performance of wide-bandwidth signal acquisition in dense multipath channels , 2005, IEEE Transactions on Vehicular Technology.

[20]  Goo-Rak Kwon,et al.  Signal Processing for Tracking of Moving Object in Multi-Impulse Radar Network System , 2015, Int. J. Distributed Sens. Networks.

[21]  P. Withington,et al.  Enhancing homeland security with advanced UWB sensors , 2003 .

[22]  Andrea Giorgetti,et al.  An ultra-wideband radar approach to nondestructive testing , 2014, 2014 IEEE International Conference on Ultra-WideBand (ICUWB).

[23]  Kim B. Housewright,et al.  Derivation and evaluation of improved tracking filter for use in dense multitarget environments , 1974, IEEE Trans. Inf. Theory.

[24]  Andreas F. Molisch,et al.  Ultra-Wide-Band Propagation Channels , 2009, Proceedings of the IEEE.

[25]  David Suter,et al.  Joint Detection and Estimation of Multiple Objects From Image Observations , 2010, IEEE Transactions on Signal Processing.

[26]  Qilian Liang,et al.  Multistep Information Fusion for Target Detection Using UWB Radar Sensor Network , 2015, IEEE Sensors Journal.

[27]  L.J. Cimini,et al.  MIMO Radar with Widely Separated Antennas , 2008, IEEE Signal Processing Magazine.

[28]  J. Stein,et al.  Generalized Correlation of Multi-Target Track Data , 1975, IEEE Transactions on Aerospace and Electronic Systems.

[29]  J. Rovnakova,et al.  Imaging method: A strong tool for moving target tracking by a multistatic UWB radar system , 2010, 2010 IEEE 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI).

[30]  Moe Z. Win,et al.  Blind Selection of Representative Observations for Sensor Radar Networks , 2015, IEEE Transactions on Vehicular Technology.

[31]  Andrea Giorgetti,et al.  Bayesian tracking in UWB radar sensor networks , 2013, 2013 IEEE International Conference on Communications Workshops (ICC).

[32]  Moe Z. Win,et al.  On the accuracy of localization systems using wideband antenna arrays , 2010, IEEE Transactions on Communications.

[33]  Andrea Giorgetti,et al.  Coexistence Between UWB and Narrow-Band Wireless Communication Systems , 2009, Proceedings of the IEEE.

[34]  Suresh Venkatasubramanian,et al.  Multiple Target Tracking with RF Sensor Networks , 2013, IEEE Transactions on Mobile Computing.

[35]  V. Chernyak Signal Processing in Multisite UWB Radar Devices for Searching Survivors in Rubble , 2006, 2006 European Radar Conference.

[36]  Tommaso Rossi,et al.  Beamforming Algorithms for UWB Radar-based Stroke Detection: Trade-off Performance-Complexity , 2016 .

[37]  Dusan Kocur,et al.  CFAR detectors for through wall tracking of moving targets by M-sequence UWB radar , 2010, 20th International Conference Radioelektronika 2010.

[38]  Moe Z. Win,et al.  Fundamental Limits of Wideband Localization— Part I: A General Framework , 2010, IEEE Transactions on Information Theory.

[39]  Takuya Sakamoto,et al.  Fast and accurate UWB radar imaging using hybrid of Kirchhoff migration and Stolt's F-K migration with inverse boundary scattering transform , 2014, 2014 IEEE International Conference on Ultra-WideBand (ICUWB).

[40]  Alexander G. Yarovoy,et al.  Signal Processing for Improved Detection of Trapped Victims Using UWB Radar , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Rudolf Mathar,et al.  Optimum Power Allocation in Sensor Networks for Active Radar Applications , 2014, IEEE Transactions on Wireless Communications.

[42]  Marco Lops,et al.  Asymptotically optimum radar detection in compound-Gaussian clutter , 1995 .

[43]  Moe Z. Win,et al.  Threshold-Based Time-of-Arrival Estimators in UWB Dense Multipath Channels , 2006, 2006 IEEE International Conference on Communications.

[44]  Mehmet Burak Guldogan,et al.  A Bernoulli Filter for Extended Target Tracking Using Random Matrices in a UWB Sensor Network , 2016, IEEE Sensors Journal.

[45]  Siliang Wu,et al.  Detection and localization of high speed moving targets using a short-range UWB impulse radar , 2008, 2008 IEEE Radar Conference.

[46]  Eli Brookner,et al.  MIMO radar demystified and where it makes sense to use , 2014, 2013 IEEE International Symposium on Phased Array Systems and Technology.

[47]  Moe Z. Win,et al.  Ranging With Ultrawide Bandwidth Signals in Multipath Environments , 2009, Proceedings of the IEEE.

[48]  Moe Z. Win,et al.  NLOS identification and mitigation for localization based on UWB experimental data , 2010, IEEE Journal on Selected Areas in Communications.

[49]  Chau Yuen,et al.  Novel System Architecture and Waveform Design for Cognitive Radar Radio Networks , 2012, IEEE Transactions on Vehicular Technology.

[50]  S.S. Blackman,et al.  Multiple hypothesis tracking for multiple target tracking , 2004, IEEE Aerospace and Electronic Systems Magazine.

[51]  Xiao Zhang,et al.  Human-Target Detection and Surrounding Structure Estimation Under a Simulated Rubble via UWB Radar , 2013, IEEE Geoscience and Remote Sensing Letters.

[52]  Jing Liang,et al.  Design and Analysis of Distributed Radar Sensor Networks , 2011, IEEE Transactions on Parallel and Distributed Systems.

[53]  I. Guvenc,et al.  Threshold-based TOA estimation for impulse radio UWB systems , 2005, 2005 IEEE International Conference on Ultra-Wideband.

[54]  Sung Ho Cho,et al.  A counting sensor for inbound and outbound people using IR-UWB radar sensors , 2016, 2016 IEEE Sensors Applications Symposium (SAS).

[55]  Yazhou Wang,et al.  CW and Pulse–Doppler Radar Processing Based on FPGA for Human Sensing Applications , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[56]  Moe Z. Win,et al.  The Effect of Cooperation on UWB-Based Positioning Systems Using Experimental Data , 2008, EURASIP J. Adv. Signal Process..

[57]  Marco Chiani,et al.  A Robust Wireless Sensor Network for Landslide Risk Analysis: System Design, Deployment, and Field Testing , 2016, IEEE Sensors Journal.

[58]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[59]  Dusan Kocur,et al.  Moving person tracking by UWB radar system in complex environment , 2013, 2013 IEEE 8th International Symposium on Intelligent Signal Processing.

[60]  Hyundong Shin,et al.  Least Square Cooperative Localization , 2015, IEEE Transactions on Vehicular Technology.

[61]  Andrea Giorgetti,et al.  Multiple target tracking with particle filtering in UWB radar sensor networks , 2015, 2015 International Conference on Location and GNSS (ICL-GNSS).

[62]  Moe Z. Win,et al.  Experimental Characterization of Diversity Navigation , 2014, IEEE Systems Journal.

[63]  Moe Z. Win,et al.  Ultrawide Bandwidth RFID: The Next Generation? , 2010, Proceedings of the IEEE.

[64]  Hyung-Myung Kim,et al.  Localization methods of multi-targets for UWB radar sensor networks , 2011, 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR).

[65]  F. Colone,et al.  Potentialities and challenges of WiFi-based passive radar , 2012, IEEE Aerospace and Electronic Systems Magazine.

[66]  Pierfrancesco Lombardo,et al.  WiFi-Based Passive ISAR for High-Resolution Cross-Range Profiling of Moving Targets , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[67]  Stefano Pisa,et al.  Complex Radar Cross Section Measurements of the Human Body for Breath-Activity Monitoring Applications , 2015, IEEE Transactions on Instrumentation and Measurement.

[68]  Davide Dardari,et al.  Passive UWB RFID for Tag Localization: Architectures and Design , 2016, IEEE Sensors Journal.

[69]  R.M. Buehrer,et al.  Indoor Location Positioning of Non-Active Objects Using Ultra-Wideband Radios , 2007, 2007 IEEE Radio and Wireless Symposium.

[70]  Henry Leung,et al.  Cognitive chaotic UWB-MIMO radar based on nonparametric Bayesian technique , 2015, IEEE Transactions on Aerospace and Electronic Systems.

[71]  Moe Z. Win,et al.  A Mathematical Model for Wideband Ranging , 2015, IEEE Journal of Selected Topics in Signal Processing.

[72]  E. Arias-de-Reyna,et al.  Indoor Localization With Range-Based Measurements and Little Prior Information , 2013, IEEE Sensors Journal.

[73]  Moe Z. Win,et al.  Characterization of ultra-wide bandwidth wireless indoor channels: a communication-theoretic view , 2002, IEEE J. Sel. Areas Commun..

[74]  Andrea Giorgetti,et al.  Stop-and-Go Receivers for Non-Coherent Impulse Communications , 2014, IEEE Transactions on Wireless Communications.

[75]  William G. Scanlon,et al.  Ultrawideband Communications—An Idea Whose Time has Still Yet to Come? [Wireless Corner] , 2015, IEEE Antennas and Propagation Magazine.

[76]  Andrea Giorgetti,et al.  Analysis of UWB Radar Sensor Networks , 2010, 2010 IEEE International Conference on Communications.

[77]  Qilian Liang,et al.  Radar Sensor Wireless Channel Modeling in Foliage Environment: UWB Versus Narrowband , 2011, IEEE Sensors Journal.

[78]  Jing Li,et al.  Advanced Signal Processing for Vital Sign Extraction With Applications in UWB Radar Detection of Trapped Victims in Complex Environments , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[79]  Ismail Guvenc,et al.  UWB radar for indoor detection and ranging of moving objects: An experimental study , 2016, 2016 International Workshop on Antenna Technology (iWAT).

[80]  Daniel Urdzik,et al.  CFAR detectors for through wall tracking of moving targets by M-sequence UWB radar , 2010, RADIOELEKTRONIKA 2010.

[81]  W. Wiesbeck,et al.  History and Applications of UWB [Scanning the Issue] , 2009 .

[82]  R. Mahler,et al.  PHD filters of higher order in target number , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[83]  Andrea Giorgetti,et al.  Localization Capability of Cooperative Anti-Intruder Radar Systems , 2008, EURASIP J. Adv. Signal Process..

[84]  Davide Dardari,et al.  A Novel Joint RFID and Radar Sensor Network for Passive Localization: Design and Performance Bounds , 2014, IEEE Journal of Selected Topics in Signal Processing.

[85]  Moe Z. Win,et al.  Network Experimentation for Cooperative Localization , 2012, IEEE Journal on Selected Areas in Communications.

[86]  Moe Z. Win,et al.  Impulse radio: how it works , 1998, IEEE Communications Letters.

[87]  Andrea Giorgetti,et al.  Effect of state space partitioning on Bayesian tracking for UWB radar sensor networks , 2013, 2013 IEEE International Conference on Ultra-Wideband (ICUWB).

[88]  Qilian Liang Biologically-Inspired Target Recognition in Radar Sensor Networks , 2009, WASA.

[89]  R.L. Moses,et al.  Locating the nodes: cooperative localization in wireless sensor networks , 2005, IEEE Signal Processing Magazine.

[90]  Ronald P. S. Mahler,et al.  “Statistics 102” for Multisource-Multitarget Detection and Tracking , 2013, IEEE Journal of Selected Topics in Signal Processing.

[91]  W. Wiesbeck,et al.  History and applications of UWB , 2009 .

[92]  Moe Z. Win,et al.  Network localization and navigation via cooperation , 2011, IEEE Communications Magazine.

[93]  S. Haykin,et al.  Cognitive radar: a way of the future , 2006, IEEE Signal Processing Magazine.

[94]  James D. Taylor Ultra-wideband Radar Technology , 2000 .

[95]  Andrea Giorgetti,et al.  Multiple target detection and localization in UWB multistatic radars , 2014, 2014 IEEE International Conference on Ultra-WideBand (ICUWB).

[96]  Jiguang Sun,et al.  Through-Wall Detection of Human Being's Movement by UWB Radar , 2012, IEEE Geoscience and Remote Sensing Letters.

[97]  Andrea Giorgetti,et al.  Sensor radars with subset diversity , 2013, 2013 IEEE International Conference on Communications Workshops (ICC).

[98]  Moe Z. Win,et al.  Robust Power Allocation for Energy-Efficient Location-Aware Networks , 2013, IEEE/ACM Transactions on Networking.

[99]  Andrea Giorgetti,et al.  Indoor detection and tracking of human targets with UWB radar sensor networks , 2016, 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB).

[100]  Sinan Gezici,et al.  Multiperson Tracking With a Network of Ultrawideband Radar Sensors Based on Gaussian Mixture PHD Filters , 2015, IEEE Sensors Journal.

[101]  Juan José Murillo-Fuentes,et al.  Blind Low Complexity Time-Of-Arrival Estimation Algorithm for UWB Signals , 2015, IEEE Signal Processing Letters.

[102]  Y. Bar-Shalom,et al.  Track labeling and PHD filter for multitarget tracking , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[103]  F.C. Robey,et al.  MIMO radar theory and experimental results , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[104]  Takuya Sakamoto,et al.  Environmental imaging with a mobile UWB security robot for indoor localisation and positioning applications , 2013, 2013 European Radar Conference.

[105]  M. Amin Through-the-Wall Radar Imaging , 2011 .

[106]  Takuya Sakamoto,et al.  Texture-Based Automatic Separation of Echoes from Distributed Moving Targets in UWB Radar Signals , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[107]  Thomas Zwick,et al.  Target TOA association with the hough transform in UWB radars , 2016, IEEE Transactions on Aerospace and Electronic Systems.

[108]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[109]  Moe Z. Win,et al.  Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications , 2000, IEEE Trans. Commun..

[110]  Neal Patwari,et al.  Hidden Markov Estimation of Bistatic Range From Cluttered Ultra-Wideband Impulse Responses , 2012, IEEE Transactions on Mobile Computing.

[111]  Moe Z. Win,et al.  Network Navigation: Theory and Interpretation , 2012, IEEE Journal on Selected Areas in Communications.

[112]  Takuya Sakamoto,et al.  Fast imaging method for security systems using ultrawideband radar , 2016, IEEE Transactions on Aerospace and Electronic Systems.

[113]  Hyundong Shin,et al.  Wireless Cooperative Networks , 2008, EURASIP J. Adv. Signal Process..

[114]  Takuya Sakamoto,et al.  Ultrawideband Radar Imaging Using Adaptive Array and Doppler Separation , 2017, IEEE Transactions on Aerospace and Electronic Systems.

[115]  Berk Gulmezoglu,et al.  Indoor multi-person tracking via ultra-wideband radars , 2014 .

[116]  Y. Bar-Shalom,et al.  Tracking in a cluttered environment with probabilistic data association , 1975, Autom..

[117]  Guangyou Fang,et al.  An efficient and low-complexity through wall moving target tracking algorithm by UWB radar , 2012, 2012 14th International Conference on Ground Penetrating Radar (GPR).

[118]  James A. Ritcey,et al.  Robust detection in ultra-wideband impulse radar using DPSS-MMSE estimator , 2016, EURASIP J. Adv. Signal Process..

[119]  M.G.M. Hussain,et al.  Ultra-wideband impulse radar-an overview of the principles , 1998 .

[120]  Antonio Lázaro,et al.  Techniques for Clutter Suppression in the Presence of Body Movements during the Detection of Respiratory Activity through UWB Radars , 2014, Sensors.

[121]  James D. Taylor,et al.  Introduction to Ultra-Wideband Radar Systems , 1995 .

[122]  Francois Le Chevalier,et al.  Decentralised tracking for human target in multistatic ultra-wideband radar , 2014 .

[123]  Liuqing Yang,et al.  Wireless Localization Using Ultra-Wideband Signals , 2012 .

[124]  B. Vo,et al.  Data Association and Track Management for the Gaussian Mixture Probability Hypothesis Density Filter , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[125]  L.P. Ligthart,et al.  UWB Radar for Human Being Detection , 2005, IEEE Aerospace and Electronic Systems Magazine.

[126]  Alexander Yarovoy,et al.  Two-stage algorithm for extended target tracking by multistatic UWB radar , 2011, Proceedings of 2011 IEEE CIE International Conference on Radar.

[127]  Yuan He,et al.  Human Target Tracking in Multistatic Ultra-Wideband Radar , 2014 .

[128]  Moe Z. Win,et al.  Power Optimization for Network Localization , 2013, IEEE/ACM Transactions on Networking.

[129]  Linhua Zheng,et al.  Multistatic Ultra-wideband Localization for NLOS Environments , 2012, 2012 Second International Conference on Intelligent System Design and Engineering Application.

[130]  Dušan Kocur,et al.  Static person detection and localization with estimation of person's breathing rate using single multistatic UWB radar , 2017, 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI).

[131]  Moe Z. Win,et al.  The effect of narrowband interference on wideband wireless communication systems , 2005, IEEE Transactions on Communications.

[132]  Andrea Giorgetti,et al.  Time-of-Arrival Estimation Based on Information Theoretic Criteria , 2013, IEEE Transactions on Signal Processing.

[133]  S. Singh,et al.  Novel data association schemes for the probability hypothesis density filter , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[134]  Ernestina Cianca,et al.  Radios as Sensors , 2017, IEEE Internet of Things Journal.

[135]  Ba-Ngu Vo,et al.  The Cardinality Balanced Multi-Target Multi-Bernoulli Filter and Its Implementations , 2009, IEEE Transactions on Signal Processing.

[136]  M. Aftanas,et al.  Efficient method of TOA estimation for through wall imaging by UWB radar , 2008, 2008 IEEE International Conference on Ultra-Wideband.

[137]  I. Ya. Immoreev,et al.  Ultrawideband radars: Features and capabilities , 2009 .

[138]  Junshan Zhang,et al.  Optimal Placement for Barrier Coverage in Bistatic Radar Sensor Networks , 2016, IEEE/ACM Transactions on Networking.

[139]  Milos Drutarovský,et al.  Short-range UWB radar: Surveillance robot equipment of the future , 2014, 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[140]  Jae-Young Pyun,et al.  Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System , 2015, Sensors.

[141]  Andrea Giorgetti,et al.  UWB sensor radar networks for indoor passive navigation , 2012, 2012 Tyrrhenian Workshop on Advances in Radar and Remote Sensing (TyWRRS).

[142]  Rudolf Zetik,et al.  UWB Sensor Networks for Position Location and Imaging of Objects and Environments , 2007 .

[143]  Andrea Giorgetti,et al.  Target Tracking for UWB Multistatic Radar Sensor Networks , 2014, IEEE Journal of Selected Topics in Signal Processing.

[144]  Victor S. Chernyak,et al.  Fundamentals of multisite radar systems , 1998 .

[145]  S. Pisa,et al.  Radar cross section measurements of the human body for UWB radar applications , 2012, 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings.

[146]  Éfren Lopes Souza,et al.  Target Tracking for Sensor Networks , 2016, ACM Comput. Surv..

[147]  Andrea Giorgetti,et al.  Target detection metrics and tracking for UWB radar sensor networks , 2009, 2009 IEEE International Conference on Ultra-Wideband.

[148]  Moe Z. Win,et al.  Belief Condensation Filtering , 2013, IEEE Transactions on Signal Processing.

[149]  Dusan Kocur,et al.  Short range tracking of moving persons by UWB sensor network , 2011, 2011 8th European Radar Conference.

[150]  Robert Baxley,et al.  Real-time, anchor-free node tracking using ultrawideband range and odometry data , 2014, 2014 IEEE International Conference on Ultra-WideBand (ICUWB).