Quantum electrodynamics of strong fields in heavy ion collision

Abstract Quantum Electrodynamics of strong external fields is discussed in the context of atomic physics. For sufficiently large electromagnetic coupling constant Zα bound states can approach and even join the antiparticle continuum of the Dirac equation. The resulting possibility of spontaneous positron production and the new concept of a charged electron-positron-vacuum is discussed. The autoionization model and the exact solutions of the single particle Dirac equation are supplemented by a quantum-field-theoretical approach. The influence of vacuum polarization, possible non-linear field effects and the self-screening of extremely strong electrical charges are investigated.

[1]  B. Müller,et al.  Critical discussion of the vacuum polarization measurements in muonic atoms , 1974 .

[2]  A. B. Migdal,et al.  Vacuum polarization in strong inhomogeneous fields , 1973 .

[3]  R. Cahn,et al.  Analytic Calculation to All Orders in Z-alpha of Nuclear Size Effects in Vacuum Polarization , 1974 .

[4]  A. Akhiezer,et al.  QUANTUM ELECTRODYNAMICS. , 1965 .

[5]  W. H. Furry ON BOUND STATES AND SCATTERING IN POSITRON THEORY , 1951 .

[6]  M. Gyulassy Higher Order Vacuum Polarization for Finite Radius Nuclei: Application to Muonic Lead and Heavy Ion Collisions. , 1974 .

[7]  M. Gyulassy Nuclear-size effects on vacuum polarization in muonic Pb , 1974 .

[8]  Ya. B. Zel'Dovich,et al.  Electronic structure of superheavy atoms , 1972 .

[9]  W. Greiner,et al.  Lower Bound to Limiting Fields in Nonlinear Electrodynamics , 1973 .

[10]  W. Heisenberg,et al.  Folgerungen aus der Diracschen Theorie des Positrons , 1936 .

[11]  B. Hoffmann,et al.  On the Choice of the Action Function in the New Field Theory , 1937 .

[12]  G. Rinker,et al.  Vacuum polarization in strong, realistic electric fields , 1975 .

[13]  B. Müller,et al.  Auto-ionization of positrons in heavy ion collisions , 1972 .

[14]  B. Fricke,et al.  Precise calculations of atomic electron binding energies in fermium , 1972 .

[15]  W. Lanford,et al.  Some Comments on the Cross Section ofCl37for Solar Neutrino Absorption , 1972 .

[16]  M. E. Rose,et al.  Relativistic Electron Theory , 1961 .

[17]  M. Sundaresan,et al.  Higher-Order Vacuum Polarization Corrections in Muonic Atoms , 1972 .

[18]  A. Klein,et al.  Remarks concerning a model field theory suggested by quantum electrodynamics in a strong electric field , 1974 .

[19]  N. Panchapakesan Charge distribution around a nucleus with Z 137 , 1971 .

[20]  Rudolph E. Langer,et al.  On the Connection Formulas and the Solutions of the Wave Equation , 1937 .

[21]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[22]  P. Dirac The quantum theory of the electron , 1928 .

[23]  W. Gordon Die Energieniveaus des Wasserstoffatoms nach der Diracschen Quantentheorie des Elektrons , 1928 .

[24]  G. Rinker,et al.  Vacuum polarization in high-Z, finite-size nuclei , 1973 .

[25]  K. Nikolsky Das Oszillatorproblem nach der Diracschen Theorie , 1930 .

[26]  W. Greiner,et al.  Electrons in strong external fields , 1971 .

[27]  B. Müller,et al.  Stabilization of the Charged Vacuum Created by Very Strong Electrical Fields in Nuclear Matter , 1975 .

[28]  N. Kroll,et al.  Vacuum Polarization in a Strong Coulomb Field , 1954 .

[29]  B. Müller,et al.  Solution of the Dirac Equation for Strong External Fields , 1972 .

[30]  F. Rohrlich,et al.  The Theory of Photons and Electrons , 1956 .

[31]  O. Klein,et al.  Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac , 1929 .

[32]  Johann Rafelski,et al.  Electron shells in over-critical external fields , 1972 .

[33]  W. Greiner,et al.  Interior electron shells in superheavy nuclei , 1969 .

[34]  E. A. Uehling Polarization effects in the positron theory , 1935 .

[35]  Sidney D. Drell,et al.  Relativistic Quantum Mechanics , 1965 .

[36]  C. Darwin,et al.  The wave equations of the electron , 1928 .

[37]  B. Müller,et al.  The charged vacuum in over-critical fields , 1974 .

[38]  W. Johnson,et al.  Self-energy corrections to the K-electron binding in heavy and superheavy atoms , 1976 .

[39]  Paul Adrien Maurice Dirac,et al.  A Theory of Electrons and Protons , 1930 .

[40]  T. D. Lee,et al.  Abnormal nuclear states and vacuum excitation , 1975 .

[41]  G. E. Brown,et al.  Lamb shift of a tightly bound electron I. Method , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  W. Greiner,et al.  SUPERHEAVY ELEMENTS AND AN UPPER LIMIT TO THE ELECTRIC FIELD STRENGTH. , 1971 .

[43]  F. Sauter Zum „Kleinschen Paradoxon“ , 1932 .

[44]  M. Gyulassy Vacuum Polarization in Heavy Ion Collisions , 1974 .

[45]  Y. Zel’dovich,et al.  The critical charge of the nucleus and the vacuum polarization , 1969 .

[46]  G. Erickson IMPROVED LAMB-SHIFT CALCULATION FOR ALL VALUES OF Z. , 1971 .

[47]  B. Müller,et al.  Electron wave functions in over-critical electrostatic potentials , 1973 .

[48]  G. Bastard,et al.  Resonant acceptor levels in zero-gap semiconductors under uniaxial stress , 1976 .

[49]  F. Beck,et al.  Bemerkungen zum Kleinschen Paradoxon , 1963 .

[50]  Peter J. Mohr,et al.  Numerical evaluation of the 1S12-state radiative level shift , 1974 .

[51]  R. Serber Linear Modifications in the Maxwell Field Equations , 1935 .

[52]  G. Soff,et al.  Dirac-Fock-Slater calculations of the elements Fermium (Z = 100) to Z = 173 , 1974 .

[53]  W. Johnson,et al.  LAMB SHIFT AND BINDING ENERGIES OF K ELECTRONS IN HEAVY ATOMS. , 1971 .

[54]  A. Layzer PROPERTIES OF THE ONE-PARTICLE GREEN'S FUNCTION FOR NONUNIFORM MANY-FERMION SYSTEMS , 1963 .