Diffusion Kinetics of Indium in TiO2 (Rutile)

This work determines the self-diffusion coefficients of indium in TiO2 single crystal (rutile). Diffusion concentration profiles were imposed by deposition of a thin surface layer of InCl3 on the TiO2 single crystal and subsequent annealing in the temperature range 1073–1573 K. The diffusion-induced concentration profiles of indium as a function of depth were determined using secondary ion mass spectrometry (SIMS). These diffusion profiles were used to calculate the self-diffusion coefficients of indium in the polycrystalline In2TiO5 surface layer and the TiO2 single crystal. The temperature dependence of the respective diffusion coefficients, in the range 1073–1573 K, can be expressed by the following formulas: DIn−In2TiO5=1.9×10−13exp(−142kJ/molRT)[m2s−1] and DIn−TiO2=7.4×10−4exp(−316kJ/molRT)[m2s−1] The obtained activation energy for bulk diffusion of indium in rutile (316 kJ/mol) is similar to that of zirconium in rutile (325 kJ/mol). The determined diffusion data can be used in selection of optimal processing conditions for TiO2–In2O3 solid solutions.

[1]  Janusz Nowotny,et al.  Titanium dioxide for solar-hydrogen I. Functional properties , 2007 .

[2]  J. Nowotny,et al.  Bulk diffusion of niobium in single-crystal titanium dioxide. , 2007, The journal of physical chemistry. B.

[3]  J. Nowotny,et al.  Determination of niobium diffusion in titania and zirconia using secondary ion mass spectrometry , 2007 .

[4]  J. Nowotny,et al.  Chemical diffusion in metal oxides. Example of TiO2 , 2006 .

[5]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[6]  M. Rȩkas,et al.  Grain Boundary Diffusion of Magnesium in Zirconia , 2002 .

[7]  Xenophon E. Verykios,et al.  Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage , 1993 .

[8]  C. Picard,et al.  Oxygen self-diffusion in non-stoichiometric rutile TiO2−x at high temperature , 1988 .

[9]  I. Masaya,et al.  Lattice disorder and behavior of implanted atoms in In-implanted TiO2 (rutile) , 1988 .

[10]  M. Kobayashi,et al.  Depth Profile Measurement by Secondary Ion Mass Spectrometry for Determining the Tracer Diffusivity of Oxygen in Rutile , 1979 .

[11]  Kazuhiko Yazawa,et al.  Photoelectrolysis of water with TiO2‐covered solar‐cell electrodes , 1976 .

[12]  D. Ginley,et al.  Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential , 1976 .

[13]  D. I. Tchernev,et al.  Photoelectrolysis of water in cells with TiO2 anodes , 1975 .

[14]  Y. Nakato,et al.  The Quantum Yield of Photolysis of Water on TiO2 Electrodes , 1975 .

[15]  O. Johnson,et al.  Diffusion of H and D in TiO2: Suppression of internal fields by isotope exchange , 1975 .

[16]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[17]  G. Gordon,et al.  Oxygen diffusion in single crystals of titanium dioxide , 1971 .

[18]  D. A. Venkatu,et al.  Diffusion of titanium of single crystal rutile , 1970 .

[19]  J. Wittke Diffusion of Transition Metal Ions into Rutile ( TiO2 ) , 1966 .

[20]  O. Johnson One-Dimensional Diffusion of Li in Rutile , 1964 .

[21]  Bertrand Poumellec,et al.  High temperature nonstoichiometric rutile TiO2-x , 1987 .

[22]  N. L. Peterson,et al.  Diffusion and point defects in TiO2−x , 1985 .

[23]  J. Sasaki,et al.  Tracer impurity diffusion in single-crystal rutile (TiO2−x) , 1985 .

[24]  J. Sasaki,et al.  Mechanisms of impurity diffusion in rutile , 1985 .

[25]  J. M. Calvert,et al.  A study of oxygen self-diffusion in the C-direction of rutile using a nuclear technique , 1981 .

[26]  J. R. Akse,et al.  Diffusion of titanium in slightly reduced rutile , 1978 .

[27]  B. Hyde,et al.  Oxygen tracer diffusion in the magnéli phases TinO2n−1 , 1976 .

[28]  T. S. Lundy,et al.  Cation self diffusion in rutile , 1972 .

[29]  R. Haul,et al.  Sauerstoff-selbstdiffusion in Rutilkristallen , 1965 .