Low percolation density and charge noise with holes in germanium

We engineer planar Ge/SiGe heterostructures for low disorder and quiet hole quantum dot operation by positioning the strained Ge channel 55~nm below the semiconductor/dielectric interface. In heterostructure field effect transistors, we measure a percolation density for two-dimensional hole transport of $2.1\times10^{10}~\text{cm}^{-2}$, indicative of a very low disorder potential landscape experienced by holes in the buried Ge channel. These Ge heterostructures support quiet operation of hole quantum dots and we measure charge noise levels that are below the detection limit $\sqrt{S_\text{E}}=0.2~\mu \text{eV}/\sqrt{\text{Hz}}$ at 1 Hz. These results establish planar Ge as a promising platform for scaled two-dimensional spin qubit arrays.

[1]  M. Veldhorst,et al.  Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots , 2020, Nano letters.

[2]  T. Schäpers,et al.  Exfoliated hexagonal BN as gate dielectric for InSb nanowire quantum dots with improved gate hysteresis and charge noise , 2020, 2001.08461.

[3]  M. Veldhorst,et al.  A single-hole spin qubit , 2019, Nature Communications.

[4]  B. P. Wuetz,et al.  Quantum dot arrays in silicon and germanium , 2019, Applied Physics Letters.

[5]  C. G. Almudever,et al.  Multiplexed quantum transport using commercial off-the-shelf CMOS at sub-kelvin temperatures , 2019, npj Quantum Information.

[6]  J. Nelson,et al.  Low-frequency charge noise in Si/SiGe quantum dots , 2019, Physical Review B.

[7]  G. Capellini,et al.  Light effective hole mass in undoped Ge/SiGe quantum wells , 2019, Physical Review B.

[8]  M. Veldhorst,et al.  Fast two-qubit logic with holes in germanium , 2019, Nature.

[9]  M. Veldhorst,et al.  Quantum Transport Properties of Industrial Si28/SiO228 , 2018, Physical Review Applied.

[10]  Susheng Tan,et al.  Germanium Quantum-Well Josephson Field-Effect Transistors and Interferometers. , 2018, Nano letters.

[11]  G. Capellini,et al.  Shallow and Undoped Germanium Quantum Wells: A Playground for Spin and Hybrid Quantum Technology , 2018, Advanced Functional Materials.

[12]  M. Kouwenhoven,et al.  Ballistic supercurrent discretization and micrometer-long Josephson coupling in germanium , 2018, Physical Review B.

[13]  Fei Gao,et al.  A germanium hole spin qubit , 2018, Nature Communications.

[14]  G. Capellini,et al.  Gate-controlled quantum dots and superconductivity in planar germanium , 2018, Nature Communications.

[15]  Jonas Helsen,et al.  A crossbar network for silicon quantum dot qubits , 2017, Science Advances.

[16]  T. Lu,et al.  Effects of surface tunneling of two-dimensional hole gases in undoped Ge/GeSi heterostructures , 2017 .

[17]  Alexei M. Tyryshkin,et al.  Annealing shallow Si/SiO2 interface traps in electron-beam irradiated high-mobility metal-oxide-silicon transistors , 2016, 1612.08729.

[18]  Hillsboro,et al.  Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2016, 1612.05936.

[19]  Hongwen Jiang,et al.  Comparison of low frequency charge noise in identically patterned Si/SiO2 and Si/SiGe quantum dots , 2016 .

[20]  J. R. Petta,et al.  Magnetotransport studies of mobility limiting mechanisms in undoped Si/SiGe heterostructures , 2015, 1503.05862.

[21]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[22]  T. Ihn,et al.  Evaluating charge noise acting on semiconductor quantum dots in the circuit quantum electrodynamics architecture , 2014, 1405.3085.

[23]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[24]  Michelle Y. Simmons,et al.  Silicon quantum electronics , 2012, 1206.5202.

[25]  R. Pillarisetty,et al.  Academic and industry research progress in germanium nanodevices , 2011, Nature.

[26]  K. Eng,et al.  Observation of percolation-induced two-dimensional metal-insulator transition in a Si MOSFET , 2008, 0811.1394.

[27]  D. Loss,et al.  Electric dipole spin resonance for heavy holes in quantum dots. , 2006, Physical review letters.

[28]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[29]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[30]  D. Loss,et al.  Spin relaxation and decoherence of holes in quantum dots. , 2005, Physical review letters.

[31]  Y. Hirayama,et al.  Background charge fluctuation in a GaAs quantum dot device , 2004 .

[32]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[33]  Stern,et al.  Single-particle relaxation time versus scattering time in an impure electron gas. , 1985, Physical review. B, Condensed matter.

[34]  Higgins,et al.  Quantum and classical mobility determination of the dominant scattering mechanism in the two-dimensional electron gas of an AlGaAs/GaAs heterojunction. , 1985, Physical review. B, Condensed matter.

[35]  G. Bauer,et al.  Low-Temperature Non-Ohmic Galvanomagnetic Effects in Degenerate n-Type InAs , 1972 .

[36]  Matthew J. Rosseinsky,et al.  Advanced Functional Materials , 2015, Materials Science Forum.