High-efficiency thin-film silicon solar cells realized by integrating stable a-Si:H absorbers into improved device design

We report that thin-film silicon solar cells exhibiting high stabilized efficiencies can be obtained by depositing hydrogenated amorphous silicon (a-Si:H) absorbers using triode-type plasma-enhanced chemical vapor deposition. The improved light-soaking stability and performance of solar cells are also realized by optimizing the device design, such as p and p–i buffer layers. As a result, we attain independently confirmed stabilized efficiencies of 10.1–10.2% for a-Si:H single-junction solar cells (absorber thickness: ti = 220–310 nm) and 12.69% for an a-Si:H (ti = 350 nm)/hydrogenated microcrystalline silicon (µc-Si:H) tandem solar cell fabricated using textured SnO2 and ZnO substrates, respectively. The relative efficiency degradations of these solar cells are ∼10 and 3%, respectively, under 1 sun illumination at 50 °C for 1000 h.

[1]  P. Babál,et al.  Wide bandgap p-type nanocrystalline silicon oxide as window layer for high performance thin-film silicon multi-junction solar cells , 2015 .

[2]  C. Ballif,et al.  High-Stable-Efficiency Tandem Thin-Film Silicon Solar Cell With Low-Refractive-Index Silicon-Oxide Interlayer , 2014, IEEE Journal of Photovoltaics.

[3]  M. Kondo,et al.  11.0%-Efficient Thin-Film Microcrystalline Silicon Solar Cells With Honeycomb Textured Substrates , 2014, IEEE Journal of Photovoltaics.

[4]  Christophe Ballif,et al.  Light-induced Voc increase and decrease in high-efficiency amorphous silicon solar cells , 2014 .

[5]  M. Kondo,et al.  Effect of oxygen doping in microcrystalline SiGe p-i-n solar cells , 2014 .

[6]  A. Terakawa,et al.  Quantitative measurement and design of texture morphology for high-efficiency thin-film silicon solar cells , 2014 .

[7]  M. Kondo,et al.  Influences of deposition temperature on characteristics of B-doped ZnO films deposited by metal–organic chemical vapor deposition , 2014 .

[8]  M. Kondo,et al.  Improved metastability and performance of amorphous silicon solar cells , 2014 .

[9]  B. Rech,et al.  Achievements and challenges in thin film silicon module production , 2013 .

[10]  T. Suezaki,et al.  Development of Highly Stable and Efficient Amorphous Silicon Based Solar Cells , 2013 .

[11]  Kimihiko Saito,et al.  High‐efficiency thin‐film silicon solar cells with improved light‐soaking stability , 2013 .

[12]  Christophe Ballif,et al.  Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells. , 2012, Nano letters.

[13]  I. Yoshida,et al.  SANYO's R&D on Thin-Film Silicon Solar Cells , 2011 .

[14]  J. Meier,et al.  Recent Developments of High Efficiency Micromorph tandem solar cells in KAI-M PECVD reactors , 2010 .

[15]  M. Zeman,et al.  Analysis of hydrogenated amorphous silicon thin films and solar cells by means of Fourier Transform Photocurrent Spectroscopy , 2008 .

[16]  A. Poruba,et al.  Comparison of photocurrent spectra measured by FTPS and CPM for amorphous silicon layers and solar cells , 2008 .

[17]  F. Finger,et al.  A constructive combination of antireflection and intermediate-reflector layers for a-Si∕μc-Si thin film solar cells , 2008 .

[18]  P. Buehlmann,et al.  In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells , 2007 .

[19]  Michio Kondo,et al.  Improvement in quantum efficiency of thin film Si solar cells due to the suppression of optical reflectance at transparent conducting oxide/Si interface by TiO2∕ZnO antireflection coating , 2006 .

[20]  S. Shimizu,et al.  Highly stabilized hydrogenated amorphous silicon solar cells fabricated by triode-plasma CVD , 2006 .

[21]  Arvind Shah,et al.  Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes , 2005 .

[22]  S. Shimizu,et al.  A highly stabilized hydrogenated amorphous silicon film having very low hydrogen concentration and an improved Si bond network , 2005 .

[23]  Kenji Yamamoto,et al.  A high efficiency thin film silicon solar cell and module , 2004 .

[24]  Arvind Shah,et al.  Amorphous solar cells, the micromorph concept and the role of VHF-GD deposition technique , 2004 .

[25]  Motohide Kai,et al.  Cluster-Suppressed Plasma Chemical Vapor Deposition Method for High Quality Hydrogenated Amorphous Silicon Films , 2002 .

[26]  Milan Vanecek,et al.  Fourier-transform photocurrent spectroscopy of microcrystalline silicon for solar cells , 2002 .

[27]  Hiroyuki Fujiwara,et al.  Optimization of hydrogenated amorphous silicon p–i–n solar cells with two-step i layers guided by real-time spectroscopic ellipsometry , 1998 .

[28]  M. Konagai,et al.  The role of H/sub 2/ dilution in the deposition of a-Si:H films and its effect on the solar cell degradation , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[29]  B. Rech,et al.  Improvement in stabilized efficiency of a-Si:H solar cells through optimized p/i-interface layers , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[30]  B. von Roedern,et al.  Second controlled light-soaking experiment for amorphous silicon modules , 1991, Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283-9).

[31]  Y. Ichikawa,et al.  Effect of p/i interface layer on dark J‐V characteristics and Voc in p‐i‐n a‐Si solar cells , 1990 .

[32]  Makoto Konagai,et al.  A novel structure, high conversion efficiency p-SiC/graded p-SiC/i-Si/n-Si/metal substrate-type amorphous silicon solar cell , 1984 .

[33]  A. Matsuda,et al.  Lifetime of dominant radicals for the deposition of a-Si:H from SiH4 and Si2H6 glow discharges , 1983 .

[34]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .