Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity

Nonspecific intermolecular collision between the central pair apparatus and radial spokes underlies a mechanosensing mechanism that regulates dynein activity in Chlamydomonas flagella.

[1]  M. Kikkawa,et al.  Novel structural labeling method using cryo-electron tomography and biotin-streptavidin system. , 2013, Journal of structural biology.

[2]  M. Kikkawa,et al.  Identification of the Outer-Inner Dynein Linker as a Hub Controller for Axonemal Dynein Activities , 2013, Current Biology.

[3]  W. Sale,et al.  The MIA complex is a conserved and novel dynein regulator essential for normal ciliary motility , 2013, The Journal of cell biology.

[4]  D. Nicastro,et al.  Conserved structural motifs in the central pair complex of eukaryotic flagella , 2013, Cytoskeleton.

[5]  Pinfen Yang,et al.  A flagellar A-kinase anchoring protein with two amphipathic helices forms a structural scaffold in the radial spoke complex , 2012, The Journal of cell biology.

[6]  A. Maheshwari,et al.  Heterogeneity of dynein structure implies coordinated suppression of dynein motor activity in the axoneme. , 2012, Journal of structural biology.

[7]  Elizabeth F. Smith,et al.  Analyses of functional domains within the PF6 protein of the central apparatus reveal a role for PF6 sub‐complex members in regulating flagellar beat frequency , 2012, Cytoskeleton.

[8]  K. Bui,et al.  Cryoelectron tomography of radial spokes in cilia and flagella , 2011, The Journal of cell biology.

[9]  Phillip V. Bayly,et al.  bop5 mutations reveal new roles for the IC138 phosphoprotein in the regulation of flagellar motility and asymmetric waveforms , 2011, Molecular biology of the cell.

[10]  D. Nicastro,et al.  The CSC is required for complete radial spoke assembly and wild-type ciliary motility , 2011, Molecular biology of the cell.

[11]  W. Sale,et al.  Sequential assembly of flagellar radial spokes , 2011, Cytoskeleton.

[12]  K. Bui,et al.  Nucleotide-induced global conformational changes of flagellar dynein arms revealed by in situ analysis , 2010, Nature Structural &Molecular Biology.

[13]  D. Nicastro,et al.  The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella , 2009, The Journal of cell biology.

[14]  W. Sale,et al.  Regulation of dynein-driven microtubule sliding by the axonemal protein kinase CK1 in Chlamydomonas flagella , 2009, The Journal of cell biology.

[15]  S. Hayashi,et al.  Mechanism of flagellar oscillation–bending-induced switching of dynein activity in elastase-treated axonemes of sea urchin sperm , 2008, Journal of Cell Science.

[16]  W. Sale,et al.  Building a radial spoke: flagellar radial spoke protein 3 (RSP3) is a dimer. , 2008, Cell motility and the cytoskeleton.

[17]  M. Hirono,et al.  SAS-6 is a Cartwheel Protein that Establishes the 9-Fold Symmetry of the Centriole , 2007, Current Biology.

[18]  E. Dymek,et al.  A conserved CaM- and radial spoke–associated complex mediates regulation of flagellar dynein activity , 2007, The Journal of cell biology.

[19]  C. Lindemann,et al.  Evidence for axonemal distortion during the flagellar beat of Chlamydomonas. , 2007, Cell motility and the cytoskeleton.

[20]  Heymut Omran,et al.  Genetic defects in ciliary structure and function. , 2007, Annual review of physiology.

[21]  J. McIntosh,et al.  The Molecular Architecture of Axonemes Revealed by Cryoelectron Tomography , 2006, Science.

[22]  S. King,et al.  Modulation of Chlamydomonas reinhardtii flagellar motility by redox poise , 2006, The Journal of cell biology.

[23]  N. Hirokawa,et al.  Nodal Flow and the Generation of Left-Right Asymmetry , 2006, Cell.

[24]  G. Pazour,et al.  Radial spoke proteins of Chlamydomonas flagella , 2006, Journal of Cell Science.

[25]  Pinfen Yang,et al.  The flagellar motility of Chlamydomonas pf25 mutant lacking an AKAP-binding protein is overtly sensitive to medium conditions. , 2005, Molecular biology of the cell.

[26]  P. Koumoutsakos,et al.  Feature point tracking and trajectory analysis for video imaging in cell biology. , 2005, Journal of structural biology.

[27]  Triscia W. Hendrickson,et al.  IC138 is a WD-repeat dynein intermediate chain required for light chain assembly and regulation of flagellar bending. , 2004, Molecular biology of the cell.

[28]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[29]  R. Patel-King,et al.  Flagellar radial spokes contain a Ca2+-stimulated nucleoside diphosphate kinase. , 2004, Molecular biology of the cell.

[30]  D. Mitchell Orientation of the central pair complex during flagellar bend formation in Chlamydomonas. , 2003, Cell motility and the cytoskeleton.

[31]  Ram Samudrala,et al.  PROTINFO: secondary and tertiary protein structure prediction , 2003, Nucleic Acids Res..

[32]  Chikako Shingyoji,et al.  Central-pair-linked regulation of microtubule sliding by calcium in flagellar axonemes , 2003, Journal of Cell Science.

[33]  M. Wargo,et al.  Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  G. Pazour,et al.  Intraflagellar transport and cilia-dependent diseases. , 2002, Trends in cell biology.

[35]  C. Wilkerson,et al.  The outer dynein arm-docking complex: composition and characterization of a subunit (oda1) necessary for outer arm assembly. , 2002, Molecular biology of the cell.

[36]  J. Rochaix,et al.  The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii , 2001, Molecular Genetics and Genomics.

[37]  E. O'Toole,et al.  The Chlamydomonas PF6 locus encodes a large alanine/proline-rich polypeptide that is required for assembly of a central pair projection and regulates flagellar motility. , 2001, Molecular biology of the cell.

[38]  R. Kamiya Analysis of cell vibration for assessing axonemal motility in Chlamydomonas. , 2000, Methods.

[39]  W. Sale,et al.  Characterization of a Chlamydomonas Insertional Mutant that Disrupts Flagellar Central Pair Microtubule-associated Structures , 1999, The Journal of cell biology.

[40]  W. Sale,et al.  Regulation of Chlamydomonas flagellar dynein by an axonemal protein kinase , 1994, The Journal of cell biology.

[41]  S. Dutcher,et al.  Mutations in the SUP-PF-1 locus of Chlamydomonas reinhardtii identify a regulatory domain in the beta-dynein heavy chain , 1994, The Journal of cell biology.

[42]  R. Kamiya,et al.  Isolation of two species of Chlamydomonas reinhardtii flagellar mutants, ida5 and ida6, that lack a newly identified heavy chain of the inner dynein arm. , 1993, Cell structure and function.

[43]  J. Rosenbaum,et al.  Assembly of flagellar radial spoke proteins in Chlamydomonas: identification of the axoneme binding domain of radial spoke protein 3 , 1993, The Journal of cell biology.

[44]  J. Rosenbaum,et al.  Sequence analysis reveals homology between two proteins of the flagellar radial spoke , 1992, Molecular and cellular biology.

[45]  S. Dutcher,et al.  Extragenic suppressors of paralyzed flagellar mutations in Chlamydomonas reinhardtii identify loci that alter the inner dynein arms , 1992, The Journal of cell biology.

[46]  E. Kurimoto,et al.  Two types of Chlamydomonas flagellar mutants missing different components of inner-arm dynein , 1991, The Journal of cell biology.

[47]  J. Rosenbaum,et al.  Rescue of a paralyzed-flagella mutant of Chlamydomonas by transformation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[48]  R. Kamiya,et al.  Strikingly low ATPase activities in flagellar axonemes of a Chlamydomonas mutant missing outer dynein arms. , 1990, European journal of biochemistry.

[49]  R. Kamiya Mutations at twelve independent loci result in absence of outer dynein arms in Chylamydomonas reinhardtii , 1988, The Journal of cell biology.

[50]  W. Sale The axonemal axis and Ca2+-induced asymmetry of active microtubule sliding in sea urchin sperm tails , 1986, The Journal of cell biology.

[51]  U. Goodenough,et al.  Substructure of inner dynein arms, radial spokes, and the central pair/projection complex of cilia and flagella , 1985, The Journal of cell biology.

[52]  S. Dutcher,et al.  Genetic dissection of the central pair microtubules of the flagella of Chlamydomonas reinhardtii , 1984, The Journal of cell biology.

[53]  G. Witman,et al.  Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella , 1983, The Journal of cell biology.

[54]  D. Luck,et al.  Suppressor mutations in chlamydomonas reveal a regulatory mechanism for flagellar function , 1982, Cell.

[55]  I. Gibbons Cilia and flagella of eukaryotes , 1981, The Journal of cell biology.

[56]  G. Piperno,et al.  Central-pair microtubular complex of Chlamydomonas flagella: polypeptide composition as revealed by analysis of mutants , 1981, The Journal of cell biology.

[57]  G. Piperno,et al.  Radial spokes of Chlamydomonas flagella: genetic analysis of assembly and function , 1981, The Journal of cell biology.

[58]  G. Piperno,et al.  Radial spokes of Chlamydomonas flagella: polypeptide composition and phosphorylation of stalk components , 1981, The Journal of cell biology.

[59]  G. Witman,et al.  Chlamydomonas flagellar mutants lacking radial spokes and central tubules. Structure, composition, and function of specific axonemal components , 1978, The Journal of cell biology.

[60]  G. Piperno,et al.  Flagellar mutants of Chlamydomonas: studies of radial spoke-defective strains by dikaryon and revertant analysis. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[61]  G. Piperno,et al.  Two-dimensional analysis of flagellar proteins from wild-type and paralyzed mutants of Chlamydomonas reinhardtii. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[62]  P. Satir,et al.  THE STRUCTURAL BASIS OF CILIARY BEND FORMATION , 1974, The Journal of cell biology.

[63]  F. Warner NEW OBSERVATIONS ON FLAGELLAR FINE STRUCTURE , 1970, The Journal of cell biology.

[64]  E. H. Harris The Chlamydomonas sourcebook , 2009 .

[65]  Masahide Kikkawa,et al.  Ruby-Helix: an implementation of helical image processing based on object-oriented scripting language. , 2007, Journal of structural biology.

[66]  Pinfen Yang,et al.  The radial spokes and central apparatus: mechano-chemical transducers that regulate flagellar motility. , 2004, Cell motility and the cytoskeleton.

[67]  P. Lefebvre,et al.  The role of central apparatus components in flagellar motility and microtubule assembly. , 1997, Cell motility and the cytoskeleton.

[68]  E. Kurimoto,et al.  Ability of paralyzed flagella mutants of Chlamydomonas to move. , 1996, Cell motility and the cytoskeleton.

[69]  E. Kurimoto,et al.  Microtubule sliding in flagellar axonemes of Chlamydomonas mutants missing inner- or outer-arm dynein: velocity measurements on new types of mutants by an improved method. , 1991, Cell motility and the cytoskeleton.