Development of an operational high refractive index resist for 193nm immersion lithography

Generation-three (Gen-3) immersion lithography offers the promise of enabling the 32nm half-pitch node. For Gen-3 lithography to be successful, however, there must be major breakthroughs in materials development: The hope of obtaining numerical aperture imaging ≥ 1.70 is dependent on a high index lens, fluid, and resist. Assuming that a fluid and a lens will be identified, this paper focuses on a possible path to a high index resist. Simulations have shown that the index of the resist should be ≥ 1.9 with any index higher than 1.9 leading to an increased process latitude. Creation of a high index resist from conventional chemistry has been shown to be unrealistic. The answer may be to introduce a high index, polarizable material into a resist that is inert relative to the polymer behavior, but will this too degrade the performance of the overall system? The specific approach is to add very high index (~2.9) nanoparticles to an existing resist system. These nanoparticles have a low absorbance; consequently the imaging of conventional 193nm resists does not degrade. Further, the nanoparticles are on the order of 3nm in diameter, thus minimizing any impact on line edge roughness (LER).