Fine Properties of Functions with Bounded Deformation

[1]  Antonin Chambolle,et al.  Image Segmentation by Variational Methods: Mumford and Shah Functional and the Discrete Approximations , 1995, SIAM J. Appl. Math..

[2]  G. Bellettini,et al.  Special functions of bounded deformation , 1995 .

[3]  David Mumford,et al.  Filtering, Segmentation and Depth , 1993, Lecture Notes in Computer Science.

[4]  Irene Fonseca,et al.  Quasi-convex integrands and lower semicontinuity in L 1 , 1992 .

[5]  Luigi Ambrosio,et al.  ON THE APPROXIMATION OF FREE DISCONTINUITY PROBLEMS , 1992 .

[6]  L. Evans Measure theory and fine properties of functions , 1992 .

[7]  David Mumford,et al.  The 2.1-D sketch , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[8]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[9]  L. Ambrosio Existence theory for a new class of variational problems , 1990 .

[10]  E. D. Giorgi,et al.  Existence theorem for a minimum problem with free discontinuity set , 1989 .

[11]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[12]  Decision Systems.,et al.  Variational problems in SBV , 1988 .

[13]  E. Giorgi,et al.  Un nuovo tipo di funzionale del calcolo delle variazioni , 1988 .

[14]  Leon Simon,et al.  Lectures on Geometric Measure Theory , 1984 .

[15]  Mariano Giaquinta,et al.  Existence of the displacements field for an elasto-plastic body subject to Hencky's law and Von Mises yield condition , 1980 .

[16]  R. Kohn,et al.  New estimates for deformations in terms of their strains , 1979 .

[17]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[18]  H. Fédérer Geometric Measure Theory , 1969 .