The law of importation for discrete implications

In this paper the law of importation is studied for implications defined on a finite chain L. We give a whole characterization of those S, R, QL and D-implications, derived from smooth discrete t-norms and t-conorms, that satisfy the law of importation with a discrete t-norm T"1. QL and D-implications derived from a special family of non-smooth t-conorms are also studied. Moreover, the study of the law of importation for these two last types of implications, in the framework of the unit interval [0,1], is completed from already known results on the topic.

[1]  Humberto Bustince,et al.  Automorphisms, negations and implication operators , 2003, Fuzzy Sets Syst..

[2]  Michal Baczynski,et al.  Fuzzy Implications , 2008, Studies in Fuzziness and Soft Computing.

[3]  M. J. Frank On the simultaneous associativity of F(x, y) and x+y-F(x, y). (Short Communication). , 1978 .

[4]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[5]  M. J. Frank On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .

[6]  Joan Torrens,et al.  On two types of discrete implications , 2005, Int. J. Approx. Reason..

[7]  J. Fodor Contrapositive symmetry of fuzzy implications , 1995 .

[8]  Humberto Bustince,et al.  Definition and construction of fuzzy DI-subsethood measures , 2006, Inf. Sci..

[9]  Humberto Bustince,et al.  Construction of fuzzy indices from fuzzy DI-subsethood measures: Application to the global comparison of images , 2007, Inf. Sci..

[10]  Michaeł Baczyński On a class of distributive fuzzy implications , 2001 .

[11]  Haris N. Koutsopoulos,et al.  Models for route choice behavior in the presence of information using concepts from fuzzy set theory and approximate reasoning , 1993 .

[12]  R. Mesiar,et al.  Logical, algebraic, analytic, and probabilistic aspects of triangular norms , 2005 .

[13]  Joan Torrens,et al.  A Survey on Fuzzy Implication Functions , 2007, IEEE Transactions on Fuzzy Systems.

[14]  Joan Torrens,et al.  On a class of operators for expert systems , 1993, Int. J. Intell. Syst..

[15]  Michal Baczynski,et al.  (S, N)- and R-implications: A state-of-the-art survey , 2008, Fuzzy Sets Syst..

[16]  Balasubramaniam Jayaram,et al.  On the Law of Importation $(x \wedge y) \longrightarrow z \equiv (x \longrightarrow (y \longrightarrow z))$ in Fuzzy Logic , 2008, IEEE Transactions on Fuzzy Systems.

[17]  Radko Mesiar,et al.  Triangular Norms , 2000, Trends in Logic.

[18]  Guoqing Chen,et al.  Discovering a cover set of ARsi with hierarchy from quantitative databases , 2005, Inf. Sci..

[19]  Joan Torrens,et al.  QL-implications versus D-implications , 2006, Kybernetika.

[20]  Joan Torrens,et al.  S-implications and R-implications on a finite chain , 2004, Kybernetika.

[21]  B. Jayaram On the Law of Importation , 2008 .

[22]  E. Trillas Sobre funciones de negación en la teoría de conjuntos difusos. , 1979 .

[23]  Radko Mesiar,et al.  Open problems posed at the eighth international conference on fuzzy set theory and applications , 2006, Kybernetika.

[24]  S. Gottwald A Treatise on Many-Valued Logics , 2001 .

[25]  Vladik Kreinovich,et al.  A new class of fuzzy implications. Axioms of fuzzy implication revisited , 1998, Fuzzy Sets Syst..

[26]  Sándor Jenei,et al.  New family of triangular norms via contrapositive symmetrization of residuated implications , 2000, Fuzzy Sets Syst..

[27]  Radko Mesiar,et al.  Open problems posed at the Tenth International Conference on Fuzzy Set Theory and Applications (FSTA 2010, Liptovský Ján, Slovakia) , 2010, Kybernetika.

[28]  G. Mayor,et al.  Triangular norms on discrete settings , 2005 .

[29]  Joan Torrens,et al.  Fuzzy Implications and the Weak Law of Importation , 2009, IFSA/EUSFLAT Conf..