Average Spectra and Minimum Distances of Low-Density Parity-Check Codes over Abelian Groups

Ensembles of regular low-density parity-check codes over any finite Abelian group $G$ are studied. The nonzero entries of the parity matrix are randomly chosen, independently and uniformly, from an arbitrary label group of automorphisms of $G$. Precise combinatorial results are established for the exponential growth rate of their average type-enumerating functions with respect to the code-length $N$. Minimum Bhattacharyya-distance properties are analyzed when such codes are employed over a memoryless $G$-symmetric transmission channel. In particular, minimum distances are shown to grow linearly in $N$ with probability one, and lower bounds are provided for the typical asymptotic normalized minimum distance. Finally, some numerical results are presented, indicating that the choice of the label group strongly affects the value of the typical minimum distance.

[1]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[2]  Simon Litsyn,et al.  On ensembles of low-density parity-check codes: Asymptotic distance distributions , 2002, IEEE Trans. Inf. Theory.

[3]  R. Dobrushin Asymptotic Optimality of Group and Systematic Codes for Some Channels , 1963 .

[4]  A. Terras Fourier Analysis on Finite Groups and Applications: Index , 1999 .

[5]  V. Rathi,et al.  On the Asymptotic Weight and Stopping Set Distribution of Regular LDPC Ensembles , 2005, IEEE Transactions on Information Theory.

[6]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[7]  Rüdiger L. Urbanke,et al.  Parity-check density versus performance of binary linear block codes over memoryless symmetric channels , 2003, IEEE Transactions on Information Theory.

[8]  Marc André Armand,et al.  Decoding LDPC Codes Over Integer Residue Rings , 2006, IEEE Transactions on Information Theory.

[9]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[10]  David Burshtein,et al.  Asymptotic enumeration methods for analyzing LDPC codes , 2004, IEEE Transactions on Information Theory.

[11]  J. Boutros,et al.  Non-binary adaptive LDPC codes for frequency selective channels: code construction and iterative decoding , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[12]  H. Vincent Poor,et al.  Finite-Dimensional Bounds on ${\BBZ}_m$ and Binary LDPC Codes With Belief Propagation Decoders , 2006, IEEE Transactions on Information Theory.

[13]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[14]  David J. C. MacKay,et al.  Low-density parity check codes over GF(q) , 1998, IEEE Communications Letters.

[15]  Roberto Garello,et al.  Geometrically uniform TCM codes over groups based on L × MPSK constellations , 1994, IEEE Trans. Inf. Theory.

[16]  Simon Litsyn,et al.  Distance distributions in ensembles of irregular low-density parity-check codes , 2003, IEEE Trans. Inf. Theory.

[17]  P. Vontobel,et al.  Characterizations of pseudo-codewords of (low-density) parity-check codes , 2007 .

[18]  David Burshtein,et al.  Bounds on the maximum-likelihood decoding error probability of low-density parity-check codes , 2000, IEEE Trans. Inf. Theory.

[19]  V. Borkar Probability Theory: An Advanced Course , 1995 .

[20]  P. Vontobel,et al.  Graph-Cover Decoding and Finite-Length Analysis of Message-Passing Iterative Decoding of LDPC Codes , 2005, ArXiv.

[21]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[22]  David Declercq,et al.  Non-binary Hybrid LDPC Codes: structure, decoding and optimization , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[23]  Giacomo Como,et al.  On the Gilbert-Varshamov distance of Abelian group codes , 2007, 2007 IEEE International Symposium on Information Theory.

[24]  M. A. Armand,et al.  LDPC codes over mixed alphabets , 2006 .

[25]  A. Dembo,et al.  Finite size scaling for the core of large random hypergraphs , 2007, math/0702007.

[26]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[27]  Hans-Andrea Loeliger,et al.  Signal sets matched to groups , 1991, IEEE Trans. Inf. Theory.

[28]  Alon Orlitsky,et al.  Stopping set distribution of LDPC code ensembles , 2003, IEEE Transactions on Information Theory.

[29]  Rüdiger L. Urbanke,et al.  Weight Distribution of Low-Density Parity-Check Codes , 2006, IEEE Transactions on Information Theory.

[30]  G. David Forney,et al.  Geometrically uniform codes , 1991, IEEE Trans. Inf. Theory.

[31]  Meir Feder,et al.  Random coding techniques for nonrandom codes , 1999, IEEE Trans. Inf. Theory.

[32]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[33]  R. Tennant Algebra , 1941, Nature.

[34]  Alexander Barg,et al.  Random codes: Minimum distances and error exponents , 2002, IEEE Trans. Inf. Theory.

[35]  Rüdiger L. Urbanke,et al.  Density Evolution, Thresholds and the Stability Condition for Non-binary LDPC Codes , 2005, ArXiv.

[36]  David Burshtein,et al.  On the application of LDPC codes to arbitrary discrete-memoryless channels , 2003, IEEE Transactions on Information Theory.

[37]  Giacomo Como,et al.  Ensembles of codes over abelian groups , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[38]  Uri Erez,et al.  The ML decoding performance of LDPC ensembles over Z/sub q/ , 2005, IEEE Transactions on Information Theory.

[39]  Giacomo Como,et al.  The Capacity of Finite Abelian Group Codes Over Symmetric Memoryless Channels , 2009, IEEE Transactions on Information Theory.

[40]  David Burshtein,et al.  Design and analysis of nonbinary LDPC codes for arbitrary discrete-memoryless channels , 2005, IEEE Transactions on Information Theory.

[41]  Richard E. Blahut,et al.  Composition bounds for channel block codes , 1977, IEEE Trans. Inf. Theory.

[42]  Thomas E. Fuja,et al.  LDPC codes over rings for PSK modulation , 2005, IEEE Transactions on Information Theory.