Average Spectra and Minimum Distances of Low-Density Parity-Check Codes over Abelian Groups
暂无分享,去创建一个
[1] David J. C. MacKay,et al. Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.
[2] Simon Litsyn,et al. On ensembles of low-density parity-check codes: Asymptotic distance distributions , 2002, IEEE Trans. Inf. Theory.
[3] R. Dobrushin. Asymptotic Optimality of Group and Systematic Codes for Some Channels , 1963 .
[4] A. Terras. Fourier Analysis on Finite Groups and Applications: Index , 1999 .
[5] V. Rathi,et al. On the Asymptotic Weight and Stopping Set Distribution of Regular LDPC Ensembles , 2005, IEEE Transactions on Information Theory.
[6] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[7] Rüdiger L. Urbanke,et al. Parity-check density versus performance of binary linear block codes over memoryless symmetric channels , 2003, IEEE Transactions on Information Theory.
[8] Marc André Armand,et al. Decoding LDPC Codes Over Integer Residue Rings , 2006, IEEE Transactions on Information Theory.
[9] Rüdiger L. Urbanke,et al. Modern Coding Theory , 2008 .
[10] David Burshtein,et al. Asymptotic enumeration methods for analyzing LDPC codes , 2004, IEEE Transactions on Information Theory.
[11] J. Boutros,et al. Non-binary adaptive LDPC codes for frequency selective channels: code construction and iterative decoding , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.
[12] H. Vincent Poor,et al. Finite-Dimensional Bounds on ${\BBZ}_m$ and Binary LDPC Codes With Belief Propagation Decoders , 2006, IEEE Transactions on Information Theory.
[13] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[14] David J. C. MacKay,et al. Low-density parity check codes over GF(q) , 1998, IEEE Communications Letters.
[15] Roberto Garello,et al. Geometrically uniform TCM codes over groups based on L × MPSK constellations , 1994, IEEE Trans. Inf. Theory.
[16] Simon Litsyn,et al. Distance distributions in ensembles of irregular low-density parity-check codes , 2003, IEEE Trans. Inf. Theory.
[17] P. Vontobel,et al. Characterizations of pseudo-codewords of (low-density) parity-check codes , 2007 .
[18] David Burshtein,et al. Bounds on the maximum-likelihood decoding error probability of low-density parity-check codes , 2000, IEEE Trans. Inf. Theory.
[19] V. Borkar. Probability Theory: An Advanced Course , 1995 .
[20] P. Vontobel,et al. Graph-Cover Decoding and Finite-Length Analysis of Message-Passing Iterative Decoding of LDPC Codes , 2005, ArXiv.
[21] D. A. Bell,et al. Information Theory and Reliable Communication , 1969 .
[22] David Declercq,et al. Non-binary Hybrid LDPC Codes: structure, decoding and optimization , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.
[23] Giacomo Como,et al. On the Gilbert-Varshamov distance of Abelian group codes , 2007, 2007 IEEE International Symposium on Information Theory.
[24] M. A. Armand,et al. LDPC codes over mixed alphabets , 2006 .
[25] A. Dembo,et al. Finite size scaling for the core of large random hypergraphs , 2007, math/0702007.
[26] Rüdiger L. Urbanke,et al. The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.
[27] Hans-Andrea Loeliger,et al. Signal sets matched to groups , 1991, IEEE Trans. Inf. Theory.
[28] Alon Orlitsky,et al. Stopping set distribution of LDPC code ensembles , 2003, IEEE Transactions on Information Theory.
[29] Rüdiger L. Urbanke,et al. Weight Distribution of Low-Density Parity-Check Codes , 2006, IEEE Transactions on Information Theory.
[30] G. David Forney,et al. Geometrically uniform codes , 1991, IEEE Trans. Inf. Theory.
[31] Meir Feder,et al. Random coding techniques for nonrandom codes , 1999, IEEE Trans. Inf. Theory.
[32] Rüdiger L. Urbanke,et al. Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.
[33] R. Tennant. Algebra , 1941, Nature.
[34] Alexander Barg,et al. Random codes: Minimum distances and error exponents , 2002, IEEE Trans. Inf. Theory.
[35] Rüdiger L. Urbanke,et al. Density Evolution, Thresholds and the Stability Condition for Non-binary LDPC Codes , 2005, ArXiv.
[36] David Burshtein,et al. On the application of LDPC codes to arbitrary discrete-memoryless channels , 2003, IEEE Transactions on Information Theory.
[37] Giacomo Como,et al. Ensembles of codes over abelian groups , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..
[38] Uri Erez,et al. The ML decoding performance of LDPC ensembles over Z/sub q/ , 2005, IEEE Transactions on Information Theory.
[39] Giacomo Como,et al. The Capacity of Finite Abelian Group Codes Over Symmetric Memoryless Channels , 2009, IEEE Transactions on Information Theory.
[40] David Burshtein,et al. Design and analysis of nonbinary LDPC codes for arbitrary discrete-memoryless channels , 2005, IEEE Transactions on Information Theory.
[41] Richard E. Blahut,et al. Composition bounds for channel block codes , 1977, IEEE Trans. Inf. Theory.
[42] Thomas E. Fuja,et al. LDPC codes over rings for PSK modulation , 2005, IEEE Transactions on Information Theory.