Projection methods and discrete gradient methods for preserving first integrals of ODEs

In this paper we study linear projection methods for approximating the solution and simultaneously preserving first integrals of autonomous ordinary differential equations. We show that each (linear) projection method is equivalent to a class of discrete gradient methods, in both single and multiple first integral cases, and known results for discrete gradient methods also apply to projection methods. Thus we prove that in the single first integral case, under certain mild conditions, the numerical solution for a projection method exists and is locally unique, and preserves the order of accuracy of the underlying method. Our results allow considerable freedom for the choice of projection direction and do not have a time step restriction close to critical points.

[1]  M. Papi On the domain of the implicit function and applications , 2005 .

[2]  W. Gautschi Numerical analysis: an introduction , 1997 .

[3]  O. Gonzalez Time integration and discrete Hamiltonian systems , 1996 .

[4]  T. Itoh,et al.  Hamiltonian-conserving discrete canonical equations based on variational difference quotients , 1988 .

[5]  R. Darling Differential forms and connections , 1994 .

[6]  T. E. Hull,et al.  Comparing Numerical Methods for Ordinary Differential Equations , 1972 .

[7]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[8]  J. Ortega The Newton-Kantorovich Theorem , 1968 .

[9]  R. Darling Differential forms and connections , 1994 .

[10]  Brynjulf Owren,et al.  Preserving multiple first integrals by discrete gradients , 2010, 1011.0478.

[11]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[12]  G. Quispel,et al.  Solving ODEs numerically while preserving a first integral , 1996 .

[13]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[14]  E. Hairer Symmetric Projection Methods for Differential Equations on Manifolds , 2000 .

[15]  G. Quispel,et al.  Geometric Integration Methods that Preserve Lyapunov Functions , 2005 .

[16]  G. Quispel,et al.  A new class of energy-preserving numerical integration methods , 2008 .

[17]  J. C. Simo,et al.  Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .

[18]  G. Quispel,et al.  Geometric integration using discrete gradients , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[20]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[21]  G. S. Turner,et al.  Discrete gradient methods for solving ODEs numerically while preserving a first integral , 1996 .

[22]  S. D. Cutkosky,et al.  Multilinear Algebra , 2019, Differential Forms.

[23]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[24]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[25]  G. Quispel,et al.  Discrete gradient methods for preserving a first integral of an ordinary differential equation , 2013, 1301.4717.

[26]  J. Marsden,et al.  Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .

[27]  Vasile I. Istrăţescu,et al.  Fixed point theory : an introduction , 1981 .