Neocortex–Cerebellum Circuits for Cognitive Processing

Although classically thought of as a motor circuit, the cerebellum is now understood to contribute to a wide variety of cognitive functions through its dense interconnections with the neocortex, the center of brain cognition. Recent investigations have shed light on the nature of cerebellar cognitive processing and information exchange with the neocortex. We review findings that demonstrate widespread reward-related cognitive input to the cerebellum, as well as new studies that have characterized the codependence of processing in the neocortex and cerebellum. Together, these data support a view of the neocortex-cerebellum circuit as a joint dynamic system both in classical sensorimotor contexts and reward-related, cognitive processing. These studies have also expanded classical theory on the computations performed by the cerebellar circuit.

[1]  Richard B. Ivry,et al.  Universal Transform or Multiple Functionality? Understanding the Contribution of the Human Cerebellum across Task Domains , 2019, Neuron.

[2]  L. Garriga-Grimau,et al.  [Cerebellar cognitive affective syndrome]. , 2015, Archivos argentinos de pediatria.

[3]  M. Mauk,et al.  Mechanisms of cerebellar learning suggested by eyelid conditioning , 2000, Current Opinion in Neurobiology.

[4]  T. Ruigrok,et al.  Organization of Cerebral Projections to Identified Cerebellar Zones in the Posterior Cerebellum of the Rat , 2012, The Journal of Neuroscience.

[5]  P. Strick,et al.  The cerebellum communicates with the basal ganglia , 2005, Nature Neuroscience.

[6]  Shogo Ohmae,et al.  Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice , 2015, Nature Neuroscience.

[7]  M. Häusser,et al.  Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells , 2019, Nature Neuroscience.

[8]  A. Kelley Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning , 2004, Neuroscience & Biobehavioral Reviews.

[9]  H. Zelaznik,et al.  The Cerebellum and Event Timing , 2002, Annals of the New York Academy of Sciences.

[10]  Jessica X. Brooks,et al.  The Primate Cerebellum Selectively Encodes Unexpected Self-Motion , 2013, Current Biology.

[11]  Matthew W. Jones,et al.  Electrophysiological Mapping of Novel Prefrontal – Cerebellar Pathways , 2009, Front. Integr. Neurosci..

[13]  Zhenyu Gao,et al.  Distributed synergistic plasticity and cerebellar learning , 2012, Nature Reviews Neuroscience.

[14]  A. H. Weaver,et al.  Reciprocal evolution of the cerebellum and neocortex in fossil humans. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Masao Ito Control of mental activities by internal models in the cerebellum , 2008, Nature Reviews Neuroscience.

[16]  Vincenzo Romano,et al.  Potentiation of cerebellar Purkinje cells facilitates whisker reflex adaptation through increased simple spike activity , 2018, bioRxiv.

[17]  Haim Sompolinsky,et al.  Optimal Degrees of Synaptic Connectivity , 2017, Neuron.

[18]  N. Andreasen,et al.  The Role of the Cerebellum in Schizophrenia , 2008, Biological Psychiatry.

[19]  M. Häusser,et al.  Integration of quanta in cerebellar granule cells during sensory processing , 2004, Nature.

[20]  N. Ramnani The primate cortico-cerebellar system: anatomy and function , 2006, Nature Reviews Neuroscience.

[21]  Andreea C. Bostan,et al.  Cerebellar networks with the cerebral cortex and basal ganglia , 2013, Trends in Cognitive Sciences.

[22]  Jennifer L. Raymond,et al.  Timing Rules for Synaptic Plasticity Matched to Behavioral Function , 2018, Neuron.

[23]  M. Glickstein,et al.  The anatomy of the cerebellum , 1998, Trends in Neurosciences.

[24]  D. Marr A theory of cerebellar cortex , 1969, The Journal of physiology.

[25]  Yan Yang,et al.  Duration of complex-spikes grades Purkinje cell plasticity and cerebellar motor learning , 2014, Nature.

[26]  J. Simpson,et al.  Microcircuitry and function of the inferior olive , 1998, Trends in Neurosciences.

[27]  M. Ito Cerebellar control of the vestibulo-ocular reflex--around the flocculus hypothesis. , 1982, Annual review of neuroscience.

[28]  Michael N. Economo,et al.  A cortico-cerebellar loop for motor planning , 2018, Nature.

[29]  Suzana Herculano-Houzel,et al.  Coordinated Scaling of Cortical and Cerebellar Numbers of Neurons , 2010, Front. Neuroanat..

[30]  Abigail L Person,et al.  Morphological Constraints on Cerebellar Granule Cell Combinatorial Diversity , 2017, The Journal of Neuroscience.

[31]  Claudia Clopath,et al.  Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks , 2017, Nature Communications.

[32]  Matthew W. Mosconi,et al.  Consensus Paper: Pathological Role of the Cerebellum in Autism , 2012, The Cerebellum.

[33]  Charles R. Gerfen,et al.  Distinct descending motor cortex pathways and their roles in movement , 2017, Nature.

[34]  P. Thier,et al.  Saccadic Dysmetria and Adaptation after Lesions of the Cerebellar Cortex , 1999, The Journal of Neuroscience.

[35]  George J. Augustine,et al.  Graded Control of Climbing-Fiber-Mediated Plasticity and Learning by Inhibition in the Cerebellum , 2018, Neuron.

[36]  Sandro Romani,et al.  Low-Dimensional and Monotonic Preparatory Activity in Mouse Anterior Lateral Motor Cortex , 2018, The Journal of Neuroscience.

[37]  Jeremy D. Schmahmann,et al.  Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies , 2009, NeuroImage.

[38]  C I De Zeeuw,et al.  Association between dendritic lamellar bodies and complex spike synchrony in the olivocerebellar system. , 1997, Journal of neurophysiology.

[39]  F A Mussa-Ivaldi,et al.  Adaptive representation of dynamics during learning of a motor task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  Marc A. Sommer,et al.  Cognitive control of movement via the cerebellar-recipient thalamus , 2013, Front. Syst. Neurosci..

[41]  David Willshaw,et al.  The cerebellum as a neuronal machine , 1999 .

[42]  R. Barton,et al.  Rapid Evolution of the Cerebellum in Humans and Other Great Apes , 2014, Current Biology.

[43]  M. Rapoport,et al.  The role of the cerebellum in cognition and behavior: a selective review. , 2000, The Journal of neuropsychiatry and clinical neurosciences.

[44]  Ruben Portugues,et al.  Sensorimotor Representations in Cerebellar Granule Cells in Larval Zebrafish Are Dense, Spatially Organized, and Non-temporally Patterned , 2017, Current Biology.

[45]  Masahiko Watanabe,et al.  Structure–Function Relationships between Aldolase C/Zebrin II Expression and Complex Spike Synchrony in the Cerebellum , 2015, The Journal of Neuroscience.

[46]  T. Tzschentke,et al.  The medial prefrontal cortex as a part of the brain reward system , 2000, Amino Acids.

[47]  Daniela Popa,et al.  Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements , 2014, Nature Neuroscience.

[48]  Jeremy D. Cohen,et al.  Dynamics of the Cortico-Cerebellar Loop Fine-Tune Dexterous Movement , 2019, bioRxiv.

[49]  H. Jörntell,et al.  Climbing Fiber Coupling between Adjacent Purkinje Cell Dendrites in Vivo , 2009, Front. Cell. Neurosci..

[50]  Catherine J. Stoodley,et al.  The Theory and Neuroscience of Cerebellar Cognition. , 2019, Annual review of neuroscience.

[51]  Mary Beth Nebel,et al.  Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice , 2017, Nature Neuroscience.

[52]  Giuliana Grimaldi,et al.  Topography of Cerebellar Deficits in Humans , 2012, The Cerebellum.

[53]  E. D’Angelo,et al.  Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. , 1999, Journal of neurophysiology.

[54]  D. Armstrong Functional significance of connections of the inferior olive. , 1974, Physiological reviews.

[55]  Stefano Fusi,et al.  Why neurons mix: high dimensionality for higher cognition , 2016, Current Opinion in Neurobiology.

[56]  Bernd Kuhn,et al.  Simultaneous dendritic voltage and calcium imaging and somatic recording from Purkinje neurons in awake mice , 2018, Nature Communications.

[57]  Frederico A. C. Azevedo,et al.  Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled‐up primate brain , 2009, The Journal of comparative neurology.

[58]  Kamran Khodakhah,et al.  Cerebellar modulation of the reward circuitry and social behavior , 2019, Science.

[59]  J R Bloedel,et al.  Cerebellar afferent systems: a review. , 1973, Progress in neurobiology.

[60]  Sukbin Lim,et al.  Population-scale organization of cerebellar granule neuron signaling during a visuomotor behavior , 2017, Scientific Reports.

[61]  M. Cohen,et al.  Measuring and interpreting neuronal correlations , 2011, Nature Neuroscience.

[62]  Sho Aoki,et al.  Multizonal Cerebellar Influence Over Sensorimotor Areas of the Rat Cerebral Cortex , 2019, Cerebral cortex.

[63]  Jörn Diedrichsen,et al.  Evolution of the cerebellar cortex: The selective expansion of prefrontal-projecting cerebellar lobules , 2010, NeuroImage.

[64]  Masao Ito Mechanisms of motor learning in the cerebellum 1 1 Published on the World Wide Web on 24 November 2000. , 2000, Brain Research.

[65]  Mati Joshua,et al.  Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions , 2018, bioRxiv.

[66]  Benjamin Mathieu,et al.  Activity-Dependent Gating of Calcium Spikes by A-type K+ Channels Controls Climbing Fiber Signaling in Purkinje Cell Dendrites , 2014, Neuron.

[67]  M. Mauk,et al.  What the cerebellum computes , 2003, Trends in Neurosciences.

[68]  N. Alex Cayco-Gajic,et al.  Re-evaluating Circuit Mechanisms Underlying Pattern Separation , 2019, Neuron.

[69]  Thomas D. Mrsic-Flogel,et al.  Cerebellar contribution to preparatory activity in motor neocortex , 2018 .

[70]  H. Sompolinsky,et al.  Sparseness and Expansion in Sensory Representations , 2014, Neuron.

[71]  Mario Negrello,et al.  Variability and directionality of inferior olive neuron dendrites revealed by detailed 3D characterization of an extensive morphological library , 2019, Brain Structure and Function.

[72]  Peter L Strick,et al.  Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex , 2011, Proceedings of the National Academy of Sciences.

[73]  Liqun Luo,et al.  Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping , 2015, Cell.

[74]  S. Lisberger,et al.  The Cerebellum: A Neuronal Learning Machine? , 1996, Science.

[75]  Torgeir Moberget,et al.  Annals of the New York Academy of Sciences Cerebellar Contributions to Motor Control and Language Comprehension: Searching for Common Computational Principles , 2022 .

[76]  T. Kita,et al.  The Subthalamic Nucleus Is One of Multiple Innervation Sites for Long-Range Corticofugal Axons: A Single-Axon Tracing Study in the Rat , 2012, The Journal of Neuroscience.

[77]  Jeremy D. Cohen,et al.  The Pontine Nuclei are an Integrative Cortico-Cerebellar Link Critical for Dexterity , 2019 .

[78]  L. Luo,et al.  Cerebellar granule cells encode the expectation of reward , 2017, Nature.

[79]  Sachie K. Ogawa,et al.  Whole-Brain Mapping of Direct Inputs to Midbrain Dopamine Neurons , 2012, Neuron.

[80]  Trygve B. Leergaard,et al.  Topography of the complete corticopontine projection: From experiments to principal Maps , 2007, Front. Neurosci..

[81]  A. Bastian Learning to predict the future: the cerebellum adapts feedforward movement control , 2006, Current Opinion in Neurobiology.

[82]  J. Albus A Theory of Cerebellar Function , 1971 .

[83]  P. Strick,et al.  Cerebellar Loops with Motor Cortex and Prefrontal Cortex of a Nonhuman Primate , 2003, The Journal of Neuroscience.

[84]  Mati Joshua,et al.  Cerebellar climbing fibers encode expected reward size , 2019, bioRxiv.

[85]  J. Voogd,et al.  Mesodiencephalic and cerebellar terminals terminate upon the same dendritic spines in the glomeruli of the cat and rat inferior olive: An ultrastructural study using a combination of [3H]-leucine and wheat germ agglutinin coupled horseradish peroxidase anterograde tracing , 1990, Neuroscience.

[86]  R. Wise,et al.  Brain dopamine and reward. , 1989, Annual review of psychology.

[87]  R. Angus Silver,et al.  Network Structure within the Cerebellar Input Layer Enables Lossless Sparse Encoding , 2014, Neuron.

[88]  Richard E Thompson,et al.  Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning , 1997, Trends in Neurosciences.

[89]  Nancy C. Andreasen,et al.  The therapeutic potential of the cerebellum in schizophrenia , 2014, Front. Syst. Neurosci..

[90]  M. Häusser,et al.  High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons , 2007, Nature.

[91]  J. Schmahmann The cerebrocerebellar system: anatomic substrates of the cerebellar contribution to cognition and emotion , 2001 .

[92]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[93]  M. Fujita,et al.  Adaptive filter model of the cerebellum , 1982, Biological Cybernetics.

[94]  Ben Deverett,et al.  Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning , 2017, Nature Neuroscience.

[95]  D. Tank,et al.  Widespread State-Dependent Shifts in Cerebellar Activity in Locomoting Mice , 2012, PloS one.

[96]  Dominique L. Pritchett,et al.  Locomotor activity modulates associative learning in mouse cerebellum , 2017, Nature Neuroscience.

[97]  E. Boyden,et al.  Cerebellum-dependent learning: the role of multiple plasticity mechanisms. , 2004, Annual review of neuroscience.

[98]  Adam W Hantman,et al.  Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells , 2013, eLife.

[99]  E. Miller,et al.  Gradual progression from sensory to task-related processing in cerebral cortex , 2017, Proceedings of the National Academy of Sciences.

[100]  Martin T. Wiechert,et al.  Synaptic diversity enables temporal coding of coincident multi-sensory inputs in single neurons , 2015, Nature Neuroscience.

[101]  Surya Ganguli,et al.  Shared Cortex-Cerebellum Dynamics in the Execution and Learning of a Motor Task , 2019, Cell.

[102]  T. Hirano Purkinje Neurons: Development, Morphology, and Function , 2018, The Cerebellum.

[103]  Masao Ito,et al.  Historical Review of the Significance of the Cerebellum and the Role of Purkinje Cells in Motor Learning , 2002, Annals of the New York Academy of Sciences.

[104]  Cathrin B. Canto,et al.  Role of Synchronous Activation of Cerebellar Purkinje Cell Ensembles in Multi-joint Movement Control , 2015, Current Biology.

[105]  Stephen G. Lisberger,et al.  Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys , 2008, Nature Neuroscience.

[106]  Mark J. Schnitzer,et al.  Automated Analysis of Cellular Signals from Large-Scale Calcium Imaging Data , 2009, Neuron.

[107]  Timothy J. Ebner,et al.  Cerebellum Predicts the Future Motor State , 2008, The Cerebellum.

[108]  P. Strick,et al.  Cerebellar Projections to the Prefrontal Cortex of the Primate , 2001, The Journal of Neuroscience.

[109]  Reza Shadmehr,et al.  Encoding of error and learning to correct that error by the Purkinje cells of the cerebellum , 2018, Nature Neuroscience.

[110]  Tatsuya Kimura,et al.  Cerebellar complex spikes encode both destinations and errors in arm movements , 1998, Nature.