LYAPUNOV EXPONENTS

The analysis of potentially chaotic behavior in biological and biomedical phenomena has attracted great interest in recent years (1–6). Although no universally accepted mathematical definition of the term chaos exists, Strogatz (7) provides a working definition as ‘‘aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence on initial conditions.’’ Aperiodic long-term behavior means that trajectories do not converge to fixed points, periodic orbits, or quasi-periodic orbits as t N, but instead exhibit irregular and unpredictable behavior. ‘‘Deterministic’’ means that this unpredictable, aperiodic behavior derives from the inherent nonlinearities in the system itself (which can be expressed by deterministic equations of motion), and are not because of noise or other stochastic elements in the system. ‘‘Sensitive dependence on initial conditions’’ (SDIC) means that trajectories that start arbitrarily near to each other will separate exponentially fast, an example of which is given in Fig. 1 that shows the effects of SDIC for the classic Lorenz attractor:

[1]  Abraham Kandel,et al.  Fuzzy methods in tremor assessment, prediction, and rehabilitation , 2001, Artif. Intell. Medicine.

[2]  Milan Palus,et al.  Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos , 1996, Biological Cybernetics.

[3]  M. Turvey,et al.  Advantages of Rhythmic Movements at Resonance: Minimal Active Degrees of Freedom, Minimal Noise, and Maximal Predictability , 2000, Journal of motor behavior.

[4]  Theiler,et al.  Generating surrogate data for time series with several simultaneously measured variables. , 1994, Physical review letters.

[5]  T. Schreiber,et al.  Surrogate time series , 1999, chao-dyn/9909037.

[6]  Gregory L. Baker,et al.  Chaotic Dynamics: an Introduction (1st ed.) , 1990 .

[7]  Ralf Engbert Testing for nonlinearity: the role of surrogate data , 2002 .

[8]  Mehmet Emre Çek,et al.  Analysis of observed chaotic data , 2004 .

[9]  Marcelo A. Savi,et al.  Distinguishing Periodic and Chaotic Time Series Obtained from an Experimental Nonlinear Pendulum , 2001 .

[10]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[11]  B. Ulrich,et al.  Dynamic stability of gait cycles as a function of speed and system constraints. , 2004, Motor control.

[12]  M. Pascual Understanding nonlinear dynamics , 1996 .

[13]  R. Mañé,et al.  On the dimension of the compact invariant sets of certain non-linear maps , 1981 .

[14]  A. Giovanni,et al.  Determination of largest Lyapunov exponents of vocal signal: application to unilateral laryngeal paralysis. , 1999, Journal of voice : official journal of the Voice Foundation.

[15]  J. Collins,et al.  Random walking during quiet standing. , 1994, Physical review letters.

[16]  Holger Kantz,et al.  Noise in chaotic data: Diagnosis and treatment. , 1995, Chaos.

[17]  Kazuyuki Aihara,et al.  Analysis of positive Lyapunov exponents from random time series , 1998 .

[18]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[19]  Jens Timmer,et al.  Power of surrogate data testing with respect to nonstationarity , 1998, chao-dyn/9807039.

[20]  Zhenghua Dai,et al.  Noise robust estimates of the largest Lyapunov exponent , 2005 .

[21]  B. Havsteen Evidence of quasi-linear gas transport through sperm whale myoglobin , 2002, European Biophysics Journal.

[22]  S J Schiff,et al.  Discriminating deterministic versus stochastic dynamics in neuronal activity , 1994, Integrative physiological and behavioral science : the official journal of the Pavlovian Society.

[23]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[24]  Philippe Faure,et al.  Is there chaos in the brain? II. Experimental evidence and related models. , 2003, Comptes rendus biologies.

[25]  Chi K. Tse,et al.  Applying the method of surrogate data to cyclic time series , 2002 .

[26]  C. Stam,et al.  Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field , 2005, Clinical Neurophysiology.

[27]  Lyapunov exponent of ion motion in microplasmas. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[29]  Olbrich,et al.  Chaos or noise: difficulties of a distinction , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  M. Savi,et al.  Evaluating Noise Sensitivity on the Time Series Determination of Lyapunov Exponents Applied to the Nonlinear Pendulum , 2003 .

[31]  Schreiber,et al.  Improved Surrogate Data for Nonlinearity Tests. , 1996, Physical review letters.

[32]  Jack J Jiang,et al.  Nonlinear dynamics of phonations in excised larynx experiments. , 2003, The Journal of the Acoustical Society of America.

[33]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[34]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[35]  Fabrice Mégrot,et al.  Dimensionality and the Dynamics of Human Unstable Equilibrium , 2002, Journal of motor behavior.

[36]  M. Palu Chaotic Measures and Real-World Systems: Does the Lyapunov exponent always measure chaos? , 2007 .

[37]  F. Takens Detecting strange attractors in turbulence , 1981 .

[38]  K. Briggs An improved method for estimating Liapunov exponents of chaotic time series , 1990 .

[39]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[40]  John L. Casti Chaos data analyzer , 1996, Complex..

[41]  Zhishun Wang,et al.  Chaotic behavior of gastric migrating myoelectrical complex , 2004, IEEE Transactions on Biomedical Engineering.

[42]  P. Rapp,et al.  Re-examination of the evidence for low-dimensional, nonlinear structure in the human electroencephalogram. , 1996, Electroencephalography and clinical neurophysiology.

[43]  N. Yamada Chaotic swaying of the upright posture , 1995 .

[44]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[45]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[46]  Stephen P. Ellner,et al.  Chaos in a Noisy World: New Methods and Evidence from Time-Series Analysis , 1995, The American Naturalist.

[47]  N. Stergiou,et al.  Nonlinear dynamics indicates aging affects variability during gait. , 2003, Clinical biomechanics.

[48]  Edward Ott,et al.  Chaos in Dynamical Systems - 2nd Edition , 2002 .

[49]  Henry D. I. Abarbanel,et al.  Variation of Lyapunov exponents on a strange attractor , 1991 .

[50]  J. Dingwell,et al.  Nonlinear time series analysis of normal and pathological human walking. , 2000, Chaos.

[51]  A. Stefanovska,et al.  Nonlinear dynamics of the blood flow studied by Lyapunov exponents , 1998, Bulletin of mathematical biology.

[52]  P E Rapp,et al.  A guide to dynamical analysis , 1994, Integrative physiological and behavioral science : the official journal of the Pavlovian Society.

[53]  Steven J. Schiff,et al.  Differentiation of linearly correlated noise from chaos in a biologic system using surrogate data , 1992, Biological Cybernetics.

[54]  H. Kantz A robust method to estimate the maximal Lyapunov exponent of a time series , 1994 .

[55]  Ramazan Gençay,et al.  Is the largest Lyapunov exponent preserved in embedded dynamics , 2000 .

[56]  Mitchell G Longstaff,et al.  A nonlinear analysis of the temporal characteristics of handwriting , 1999 .

[57]  Kevin Judd,et al.  Dangers of geometric filtering , 1993 .

[58]  Nong Ye,et al.  Recent Developments in Chaotic Time Series Analysis , 2003, Int. J. Bifurc. Chaos.

[59]  Khashayar Pakdaman,et al.  An Analysis of the Reliability Phenomenon in the FitzHugh-Nagumo Model , 2004, Journal of Computational Neuroscience.

[60]  Henry D. I. Abarbanel,et al.  Local Lyapunov exponents computed from observed data , 1992 .

[61]  Jeffrey M. Hausdorff,et al.  Fractal dynamics in physiology: Alterations with disease and aging , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Patrick McSharry,et al.  The danger of wishing for chaos. , 2005, Nonlinear dynamics, psychology, and life sciences.

[63]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[64]  J. Dingwell,et al.  Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. , 2006, Journal of biomechanics.

[65]  B W Kooi,et al.  Resistance of a food chain to invasion by a top predator. , 1999, Mathematical biosciences.

[66]  James A. Yorke,et al.  SPURIOUS LYAPUNOV EXPONENTS IN ATTRACTOR RECONSTRUCTION , 1998 .

[67]  Jianfeng Feng,et al.  Stability of synchronous oscillations in a system of Hodgkin-Huxley neurons with delayed diffusive and pulsed coupling. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  B. Havsteen Control of the pathogenic conformational change of the prion protein by an attractor of low order. , 2004, Journal of theoretical biology.

[69]  Sergei Petrovskii,et al.  Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect. , 2006, Journal of theoretical biology.

[70]  Ramazan Gençay,et al.  The topological invariance of Lyapunov exponents in embedded dynamics , 1996 .

[71]  M. Lauk,et al.  Pathological tremors: Deterministic chaos or nonlinear stochastic oscillators? , 2000, Chaos.

[72]  H. Huikuri,et al.  Fractal and Complexity Measures of Heart Rate Variability , 2005, Clinical and experimental hypertension.

[73]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[74]  Andrew M. Fraser,et al.  Using Mutual Information to Estimate Metric Entropy , 1986 .

[75]  L. Lipsitz Dynamics of stability: the physiologic basis of functional health and frailty. , 2002, The journals of gerontology. Series A, Biological sciences and medical sciences.

[76]  N. Stergiou,et al.  The effect of the walking speed on the stability of the anterior cruciate ligament deficient knee. , 2004, Clinical biomechanics.