Efficient mining of both positive and negative association rules

This paper presents an efficient method for mining both positive and negative association rules in databases. The method extends traditional associations to include association rules of forms <i>A</i> ⇒ ¬ <i>B</i>, ¬ <i>A</i> ⇒ <i>B</i>, and ¬ <i>A</i> ⇒ ¬ <i>B</i>, which indicate negative associations between itemsets. With a pruning strategy and an interestingness measure, our method scales to large databases. The method has been evaluated using both synthetic and real-world databases, and our experimental results demonstrate its effectiveness and efficiency.

[1]  Roberto J. Bayardo,et al.  Efficiently mining long patterns from databases , 1998, SIGMOD '98.

[2]  Philip S. Yu,et al.  A new framework for itemset generation , 1998, PODS '98.

[3]  Philip S. Yu,et al.  Data Mining: An Overview from a Database Perspective , 1996, IEEE Trans. Knowl. Data Eng..

[4]  Chris Clifton,et al.  Query flocks: a generalization of association-rule mining , 1998, SIGMOD '98.

[5]  Nick Cercone,et al.  Share Based Measures for Itemsets , 1997, PKDD.

[6]  Tomasz Imielinski,et al.  Database Mining: A Performance Perspective , 1993, IEEE Trans. Knowl. Data Eng..

[7]  Hongjun Lu,et al.  Efficient Search of Reliable Exceptions , 1999, PAKDD.

[8]  Ramakrishnan Srikant,et al.  Mining generalized association rules , 1995, Future Gener. Comput. Syst..

[9]  Hongjun Lu,et al.  Exception Rule Mining with a Relative Interestingness Measure , 2000, PAKDD.

[10]  WuXindong,et al.  Efficient mining of both positive and negative association rules , 2004 .

[11]  Gregory Piatetsky-Shapiro,et al.  Discovery, Analysis, and Presentation of Strong Rules , 1991, Knowledge Discovery in Databases.

[12]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[13]  Vipin Kumar,et al.  Mining Indirect Associations in Web Data , 2001, WEBKDD.

[14]  Einoshin Suzuki,et al.  Autonomous Discovery of Reliable Exception Rules , 1997, KDD.

[15]  Shamkant B. Navathe,et al.  Mining for strong negative associations in a large database of customer transactions , 1998, Proceedings 14th International Conference on Data Engineering.

[16]  Masamichi Shimura,et al.  Exceptional Knowledge Discovery in Databases Based on Information Theory , 1996, KDD.

[17]  E. Shortliffe Computer-based medical consultations: mycin (elsevier north holland , 1976 .

[18]  Rajeev Motwani,et al.  Beyond market baskets: generalizing association rules to correlations , 1997, SIGMOD '97.

[19]  Jaideep Srivastava,et al.  Indirect Association: Mining Higher Order Dependencies in Data , 2000, PKDD.

[20]  Balaji Padmanabhan,et al.  Small is beautiful: discovering the minimal set of unexpected patterns , 2000, KDD '00.

[21]  Balaji Padmanabhan,et al.  A Belief-Driven Method for Discovering Unexpected Patterns , 1998, KDD.

[22]  Ramakrishnan Srikant,et al.  Mining quantitative association rules in large relational tables , 1996, SIGMOD '96.

[23]  Masaru Kitsuregawa,et al.  Parallel mining algorithms for generalized association rules with classification hierarchy , 1997, SIGMOD '98.

[24]  Philip S. Yu,et al.  Using a Hash-Based Method with Transaction Trimming for Mining Association Rules , 1997, IEEE Trans. Knowl. Data Eng..

[25]  Edward H. Shortliffe,et al.  Chapter 3 – Consultation System , 1976 .

[26]  E H Shorthffe,et al.  Computer-based medical consultations mycin , 1976 .

[27]  Jian Tang,et al.  Mining exception instances to facilitate workflow exception handling , 1999, Proceedings. 6th International Conference on Advanced Systems for Advanced Applications.

[28]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.