The combination of MoS2/reduced graphene oxide composite electrode and ionic liquid for high-temperature supercapacitor

[1]  A. Lamberti,et al.  A High-Temperature High-Pressure Supercapacitor based on Ionic Liquids for harsh environment applications , 2023, Electrochimica Acta.

[2]  Qi Liu,et al.  Engineering Phase Stability of Semimetallic MoS2 Monolayers for Sustainable Electrocatalytic Hydrogen Production. , 2022, ACS applied materials & interfaces.

[3]  A. Balducci,et al.  High voltage electrochemical capacitors operating at elevated temperature based on 1,1-dimethylpyrrolidinium tetrafluoroborate , 2021, Energy Storage Materials.

[4]  Mingzhe Chen,et al.  Electrochemical energy storage devices working in extreme conditions , 2021 .

[5]  T. Maschmeyer,et al.  Critical review: hydrothermal synthesis of 1T-MoS2 – an important route to a promising material , 2021 .

[6]  V. Presser,et al.  Molecular Understanding of Charge Storage in MoS2 Supercapacitors with Ionic Liquids , 2020, ENERGY & ENVIRONMENTAL MATERIALS.

[7]  D. Saha,et al.  Editors’ Choice—Review—Conductive Forms of MoS2 and Their Applications in Energy Storage and Conversion , 2020 .

[8]  Gaigai Duan,et al.  Recent progress in carbon-based materials for supercapacitor electrodes: a review , 2020, Journal of Materials Science.

[9]  A. Celzard,et al.  Energy Storage in Supercapacitors: Focus on Tannin-Derived Carbon Electrodes , 2020, Frontiers in Materials.

[10]  V. Presser,et al.  Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. , 2020, Chemical reviews.

[11]  Dong Won Kim,et al.  A super-thermostable, flexible supercapacitor for ultralight and high performance devices , 2020 .

[12]  Yoka Cho,et al.  Review of energy storage technologies in harsh environment , 2019, Safety in Extreme Environments.

[13]  Hua Yu,et al.  Boundary activated hydrogen evolution reaction on monolayer MoS2 , 2019, Nature Communications.

[14]  F. Kang,et al.  Flexible, temperature-tolerant supercapacitor based on hybrid carbon film electrodes , 2017 .

[15]  R. Espinosa‐Marzal,et al.  Insight into the Electrical Double Layer of an Ionic Liquid on Graphene , 2017, Scientific Reports.

[16]  S. Bianco,et al.  Mixed 1T-2H Phase MoS2/Reduced Graphene Oxide as Active Electrode for Enhanced Supercapacitive Performance. , 2016, ACS applied materials & interfaces.

[17]  H. Groult,et al.  Modified coin cells to evaluate the electrochemical properties of solid-state fluoride-ion batteries at 150°C , 2016 .

[18]  P. Ajayan,et al.  High temperature electrical energy storage: advances, challenges, and frontiers. , 2016, Chemical Society reviews.

[19]  Jesse G. McDaniel,et al.  Ab Initio Force Fields for Imidazolium-Based Ionic Liquids. , 2016, The journal of physical chemistry. B.

[20]  Junwei Lang,et al.  A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte , 2016 .

[21]  Cher Ming Tan,et al.  Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature , 2015, Scientific Reports.

[22]  P. Yadav,et al.  Electrochemical and electronic properties of flower-like MoS2 nanostructures in aqueous and ionic liquid media , 2015 .

[23]  Hee-jee Kim,et al.  Novel high-temperature supercapacitor combined dye sensitized solar cell from a sulfated β-cyclodextrin/PVP/MnCO3 composite , 2015 .

[24]  M. Chhowalla,et al.  Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. , 2015, Nature nanotechnology.

[25]  A. Mohite,et al.  Phase engineering of transition metal dichalcogenides. , 2015, Chemical Society reviews.

[26]  Ning Pan,et al.  Supercapacitors Performance Evaluation , 2015 .

[27]  S. Kawasaki,et al.  High-temperature supercapacitor with a proton-conducting metal pyrophosphate electrolyte , 2015, Scientific Reports.

[28]  C. Stevens,et al.  Electrochemical Stability of Ionic Liquids: General Influences and Degradation Mechanisms , 2014 .

[29]  T. Mallouk,et al.  Electrochemical characterization of liquid phase exfoliated two-dimensional layers of molybdenum disulfide. , 2014, ACS applied materials & interfaces.

[30]  M. Wohlfahrt‐Mehrens,et al.  Strategies to reduce the resistance sources on Electrochemical Double Layer Capacitor electrodes , 2013 .

[31]  P. Ajayan,et al.  Supercapacitor Operating At 200 Degrees Celsius , 2013, Scientific Reports.

[32]  Kun Chang,et al.  L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries. , 2011, ACS nano.

[33]  R. Ruoff,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010, 1005.0805.

[34]  D. Roy,et al.  Electrochemical windows and impedance characteristics of [Bmim+][BF4-] and [Bdmim+][BF4-] ionic liquids at the surfaces of Au, Pt, Ta and glassy carbon electrodes , 2009 .

[35]  R. Kötz,et al.  Temperature behavior and impedance fundamentals of supercapacitors , 2006 .

[36]  G. J. Kabo,et al.  Vapor pressure and thermal stability of ionic liquid 1-butyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide , 2005 .

[37]  Kikuko Hayamizu,et al.  Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 1. Variation of Anionic Species , 2004 .

[38]  Huen Lee,et al.  Physical and electrochemical properties of 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium iodide, and 1-butyl-3-methylimidazolium tetrafluoroborate , 2004 .

[39]  Li Xiao,et al.  Electrochemistry of 1-Butyl-3-methyl-1H-imidazolium Tetrafluoroborate Ionic Liquid , 2003 .

[40]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[41]  K. Cen,et al.  A strong–weak binary solvation structure for unimpeded low-temperature ion transport in nanoporous energy storage materials , 2023, Journal of Materials Chemistry A.

[42]  Martin Winter,et al.  Review—Chemical Analysis for a Better Understanding of Aging and Degradation Mechanisms of Non-Aqueous Electrolytes for Lithium Ion Batteries: Method Development, Application and Lessons Learned , 2015 .

[43]  Suojiang Zhang,et al.  Structures and Interactions of Ionic Liquids , 2014 .

[44]  Marshall Miller,et al.  The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications , 2011 .