Two schemes for trace detection using cavity ringdown spectroscopy

We describe and compare two schemes of high-sensitivity cavity ringdown spectroscopy (CRDS), both functioning with telecom diode lasers. The first (cw-CRDS) gives high spectral resolution, which is useful for low-pressure trace detection or for laboratory spectroscopy applications. We present a compact prototype partly based on fiber technology. The second scheme exploits optical feedback (of-CRDS) and results in a much simpler setup, more appropriate for realizing low-cost trace-detection devices.

[1]  D. Romanini,et al.  CW cavity ring down spectroscopy , 1997 .

[2]  G. Berden,et al.  Cavity ring-down spectroscopy: Experimental schemes and applications , 2000 .

[3]  Charles C. Harb,et al.  A laser-locked cavity ring-down spectrometer employing an analog detection scheme , 2000 .

[4]  Daniele Romanini,et al.  Trace gas detection with DFB lasers and cavity ring-down spectroscopy , 2002, SPIE Optics + Photonics.

[5]  Daniele Romanini,et al.  Measurement of density in a discharge by intracavity laser absorption spectroscopy and CW cavity ring-down spectroscopy , 1998 .

[6]  Daniele Romanini,et al.  Cavity ringdown spectroscopy: broad band absolute absorption measurements , 1997 .

[7]  G. Meijer,et al.  A Fourier Transform Cavity Ring Down Spectrometer , 1996, Fourier Transform Spectroscopy.

[8]  Yabai He,et al.  Optical heterodyne signal generation and detection in cavity ringdown spectroscopy based on a rapidly swept cavity , 2001 .

[9]  J. B. Paul,et al.  INFRARED CAVITY RINGDOWN LASER ABSORPTION SPECTROSCOPY (IR-CRLAS) OF JET-COOLED WATER CLUSTERS , 1995 .

[10]  D. Romanini,et al.  Non-linear effects by continuous wave cavity ringdown spectroscopy in jet-cooled NO2 , 1999 .

[11]  Richard N. Zare,et al.  Cavity ring-down spectroscopy for quantitative absorption measurements , 1995 .

[12]  J P Looney,et al.  Pulsed, single-mode cavity ringdown spectroscopy. , 1999, Applied optics.

[13]  J. J. Scherer,et al.  Cavity ring down dye laser spectroscopy of jet-cooled metal clusters : Cu2 and Cu3 , 1990 .

[14]  M. Quack,et al.  CW CAVITY RING-DOWN INFRARED ABSORPTION SPECTROSCOPY IN PULSED SUPERSONIC JETS : NITROUS OXIDE AND METHANE , 1999 .

[15]  L. Allamandola,et al.  Jet-discharge cavity ring-down spectroscopy of ionized polycyclic aromatic hydrocarbons: progress in testing the PAH hypothesis for the diffuse interstellar band problem. , 1999, Chemical physics letters.

[16]  Harry Partridge,et al.  Convergence testing of the analytic representation of an ab initio dipole moment function for water: Improved fitting yields improved intensities , 2000 .

[17]  Kenneth W. Busch,et al.  Cavity-ringdown spectroscopy : an ultratrace-absorption measurement technique , 1999 .

[18]  A. O’Keefe,et al.  Cavity ring‐down optical spectrometer for absorption measurements using pulsed laser sources , 1988 .

[19]  R. Hanson,et al.  Multiplexed continuous-wave diode-laser cavity ringdown measurements of multiple species. , 2000, Applied optics.

[20]  Ming-Chang Lin,et al.  Kinetics of phenyl radical reactions studied by the cavity-ring-down method , 1993 .

[21]  N. Abraham,et al.  Analysis of the noise spectra of a laser diode with optical feedback from a high-finesse resonator , 1989 .

[22]  Yabai He,et al.  Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity , 2000 .

[23]  Daniele Romanini,et al.  Diode laser cavity ring down spectroscopy , 1997 .

[24]  David H. Parker,et al.  Coherent cavity ring down spectroscopy , 1994 .

[25]  B. Bussery-Honvault,et al.  Structure and rovibrational analysis of the [O2(1Δg)v=0]2←[O2(3Σg−)v=0]2 transition of the O2 dimer , 2000 .

[26]  Richard N Zare,et al.  Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath. , 2002, Analytical chemistry.

[27]  Michael Hippler,et al.  High-resolution cavity ring-down absorption spectroscopy of nitrous oxide and chloroform using a near-infrared cw diode laser , 1998 .

[28]  Daniele Romanini,et al.  Effects of laser phase noise on the injection of a high-finesse cavity. , 2002, Applied optics.

[29]  Michael N. R. Ashfold,et al.  J-dependent linewidths for the (110)-(000) band of the Ã1A" - X1A' transition of HNO studied by cavity ring-down spectroscopy , 1996 .

[30]  Kevin K. Lehmann,et al.  Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta , 1993 .

[31]  C. Wieman,et al.  Atomic beam collimation using a laser diode with a self-locking power-buildup cavity. , 1988, Optics letters.

[32]  J. B. Paul,et al.  Broadband ringdown spectral photography. , 2001, Applied optics.

[33]  K. Lehmann,et al.  Cavity ring‐down overtone spectroscopy of HCN, H13CN and HC15N , 1995 .

[34]  A. Clairon,et al.  Frequency noise analysis of optically self-locked diode lasers , 1989 .

[35]  Roderic L. Jones,et al.  Broadband cavity ringdown spectroscopy of the NO3 radical , 2001 .

[36]  Jeffrey W. Hudgens,et al.  Evanescent wave cavity ring-down spectroscopy with a total-internal-reflection minicavity , 1997 .

[37]  J. Maier,et al.  Cavity ringdown spectroscopy of molecular ions: A2Πu ← X2Σg+ (6−0) transition of N2+ , 1996 .

[38]  C. Alibert,et al.  Edge and vertical surface emitting lasers around 2.0–2.5 μm and their applications , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  Giel Berden,et al.  Phase shift cavity ring down absorption spectroscopy , 1996 .

[40]  Leo W. Hollberg,et al.  Using diode lasers for atomic physics , 1991 .

[41]  H. Li,et al.  Efficient frequency noise reduction of GaAlAs semiconductor lasers by optical feedback from an external high-finesse resonator , 1989 .

[42]  P. Hering,et al.  Real-time monitoring of ethane in human breath using mid-infrared cavity leak-out spectroscopy , 2001 .

[43]  Dudley E. Shallcross,et al.  Trace detection of methane using continuous wave cavity ring-down spectroscopy at 1.65 μm , 2002 .

[44]  D. Z. Anderson,et al.  Mirror reflectometer based on optical cavity decay time. , 1984, Applied optics.