First-principles calculations on the mechanical, electronic, magnetic and optical properties of two-dimensional Janus Cr$_2$TeX (X= P, As, Sb) monolayers

Janus materials possess extraordinary physical, chemical, and mechanical properties caused by symmetry breaking. Here, the mechanic properties, electronic structure, magnetic properties, and optical properties of Janus Cr$_2$TeX (X= P, As, Sb) monolayers are systematically investigated by the density functional theory. Janus Cr$_2$TeP, Cr$_2$TeAs, and Cr$_2$TeSb are intrinsic ferromagnetic (FM) half-metals with wide spin gaps and half-metallic gaps. Monte Carlo simulations based on the Heisenberg model estimate the Curie temperature (\emph{T}$_c$) of these monolayers are about 583, 608, and 597 K, respectively. Additionally, it is found that Cr$_2$TeX (X= P, As, Sb) monolayers still exhibit FM half-metallic properties under biaxial strain from -6% to 6%. At last, the Cr$_2$TeP monolayer has a higher absorption coefficient than the Cr$_2$TeAs and Cr$_2$TeSb monolayers in the visible region. The results predict that Janus Cr$_2$TeX (X= P, As, Sb) monolayers with novel properties have good potential for applications in future nanodevices.

[1]  N. Hieu,et al.  Theoretical prediction of Janus PdXO (X = S, Se, Te) monolayers: structural, electronic, and transport properties , 2022, RSC advances.

[2]  R. Wu,et al.  Cr2NX2 MXene (X = O, F, OH): A 2D ferromagnetic half-metal , 2021, Applied Physics Letters.

[3]  Xiaoli Fan,et al.  Ferromagnetic half-metal with high Curie temperature: Janus Mn2PAs monolayer , 2021, Journal of Materials Science.

[4]  Jinming Cai,et al.  Electronic, mechanical, optical and photocatalytic properties of two-dimensional Janus XGaInY (X, Y ;= S, Se and Te) monolayers , 2021, RSC advances.

[5]  Z. Guan,et al.  Predicted 2D ferromagnetic Janus VSeTe monolayer with high Curie temperature, large valley polarization and magnetic crystal anisotropy. , 2020, Nanoscale.

[6]  Yanfeng Ge,et al.  Robust intrinsic half-metallic ferromagnetism in stable 2D single-layer MnAsS4 , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Changping Yang,et al.  Intrinsic magnetism and biaxial strain tuning in two-dimensional metal halides V3X8 (X = F, Cl, Br, I) from first principles and Monte Carlo simulation. , 2019, Physical chemistry chemical physics : PCCP.

[8]  Yanfeng Ge,et al.  Phonon and electron transport in Janus monolayers based on InSe , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Jinlan Wang,et al.  MnX (X = P, As) monolayers: a new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy. , 2019, Nanoscale.

[10]  A. Du,et al.  First-Principles Prediction of a Room-Temperature Ferromagnetic Janus VSSe Monolayer with Piezoelectricity, Ferroelasticity, and Large Valley Polarization. , 2019, Nano letters.

[11]  Jinlan Wang,et al.  High Curie-temperature intrinsic ferromagnetism and hole doping-induced half-metallicity in two-dimensional scandium chlorine monolayers. , 2018, Nanoscale horizons.

[12]  W. Ren,et al.  Intrinsic and anisotropic Rashba spin splitting in Janus transition-metal dichalcogenide monolayers , 2018, Physical Review B.

[13]  Nathan C Frey,et al.  Prediction of Enhanced Catalytic Activity for Hydrogen Evolution Reaction in Janus Transition Metal Dichalcogenides. , 2018, Nano letters.

[14]  H. Sahin,et al.  Janus single layers of In2SSe: A first-principles study , 2018 .

[15]  Xin Wu,et al.  A Janus MoSSe monolayer: a potential wide solar-spectrum water-splitting photocatalyst with a low carrier recombination rate , 2018 .

[16]  R. Young,et al.  Mechanical properties of graphene and graphene-based nanocomposites , 2017 .

[17]  V. Shenoy,et al.  Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides. , 2017, ACS Nano.

[18]  Jinlong Yang,et al.  Room-Temperature Ferromagnetism in Two-Dimensional Fe2Si Nanosheet with Enhanced Spin-Polarization Ratio. , 2017, Nano letters.

[19]  Jijun Zhao,et al.  Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers , 2017 .

[20]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[21]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[22]  J. Chu,et al.  Manipulation of the large Rashba spin splitting in polar two-dimensional transition-metal dichalcogenides , 2016, 1606.07985.

[23]  S. Singh,et al.  Stable half-metallic monolayers of FeCl2 , 2015, 1507.08420.

[24]  Wu-Ming Liu,et al.  Tunable topological quantum states in three- and two-dimensional materials , 2015 .

[25]  Binghai Yan,et al.  Prediction of near-room-temperature quantum anomalous Hall effect on honeycomb materials. , 2014, Physical review letters.

[26]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[27]  Hanna Enriquez,et al.  Epitaxial growth of a silicene sheet , 2010, 1204.0523.

[28]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[29]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[30]  C. Jin,et al.  Fabrication of a freestanding boron nitride single layer and its defect assignments. , 2009, Physical review letters.

[31]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[33]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[34]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[35]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[36]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[37]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[38]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[39]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[40]  J. Kanamori Crystal Distortion in Magnetic Compounds , 1960 .

[41]  John B. Goodenough,et al.  Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 , 1955 .

[42]  Clarence Zener,et al.  Interaction between the d -Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure , 1951 .