First-principles study of native point defects in hafnia and zirconia

A first-principles study of native point defects in hafnia ! HfO2" and zirconia ! ZrO2" is carried out to identify dominant defects under different oxygen chemical potentials and Fermi levels. Oxygen vacancies and oxygen interstitials in both HfO2 and ZrO2 show negative-U behavior. It is shown that HfO2 is less prone to the formation of oxygen point defects than ZrO2 under the same oxygen chemical potential. When the Fermi level is constrained to be within the band gap of silicon, the dominant defects are negatively charged hafnium or zirconium vacancies under intermediate to high oxygen chemical potential. We find no evidence for magnetic defects.

[1]  E. Garfunkel,et al.  Soft x-ray photoemission studies of the HfO2/SiO2/Si system , 2002 .

[2]  Band engineering at interfaces : Theory and numerical experiments , 1998 .

[3]  M. Venkatesan,et al.  Magnetism in hafnium dioxide , 2005 .

[4]  King-Smith,et al.  First-principles study of phosphorus and nitrogen impurities in ZnSe. , 1995, Physical review. B, Condensed matter.

[5]  C.H. Choi,et al.  Characterization and reliability of dual high-k gate dielectric stack (poly-Si-HfO2-SiO2) prepared by in situ RTCVD process for system-on-chip applications , 2003, IEEE Electron Device Letters.

[6]  Jack C. Lee,et al.  Electrical and reliability characteristics of ZrO2 deposited directly on Si for gate dielectric application , 2000 .

[7]  Seiichi Miyazaki,et al.  Photoemission study of energy-band alignments and gap-state density distributions for high-k gate dielectrics , 2001 .

[8]  Young-Gu Jin,et al.  H-related defect complexes in HfO2: A model for positive fixed charge defects , 2004 .

[9]  A. Zunger,et al.  Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO , 2001 .

[10]  Baroni,et al.  Band offsets in lattice-matched heterojunctions: A model and first-principles calculations for GaAs/AlAs. , 1988, Physical review letters.

[11]  Y. Dong,et al.  First-principles study of Zr O 2 ∕ Si interfaces: Energetics and band offsets , 2005 .

[12]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[13]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[14]  K. Kukli,et al.  Properties of hafnium oxide films grown by atomic layer deposition from hafnium tetraiodide and oxygen , 2002 .

[15]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[16]  I. Barin Thermochemical data of pure substances , 1989 .

[17]  Dim-Lee Kwong,et al.  Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100) , 2001 .

[18]  Temperature dependent defect formation and charging in hafnium oxides and silicates , 2005 .

[19]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[20]  E. Cartier,et al.  Ultrathin high-K metal oxides on silicon: processing, characterization and integration issues , 2001 .

[21]  G. Ceder,et al.  Native point defects in yttria and relevance to its use as a high-dielectric-constant gate oxide material: First-principles study , 2006 .

[22]  Jack C. Lee,et al.  Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing , 2000 .

[23]  Evgeni P. Gusev,et al.  Structure and stability of ultrathin zirconium oxide layers on Si(001) , 2000 .

[24]  Andre Stesmans,et al.  Internal photoemission of electrons and holes from (100)Si into HfO2 , 2002 .

[25]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[26]  L. Pantisano,et al.  Origin of the threshold voltage instability in SiO2/HfO2 dual layer gate dielectrics , 2003, IEEE Electron Device Letters.

[27]  Michel Houssa,et al.  High-? Gate Dielectrics , 2004 .

[28]  D. Kwong,et al.  Hafnium oxide gate stack prepared by in situ rapid thermal chemical vapor deposition process for advanced gate dielectrics , 2002 .

[29]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[30]  A. Shluger,et al.  Structure and electrical levels of point defects in monoclinic zirconia , 2001 .

[31]  J. Robertson,et al.  Bonding and interface states of Si:HfO2 and Si:ZrO2 interfaces , 2006 .

[32]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[33]  Evgeni P. Gusev,et al.  Ultrathin HfO 2 films grown on Silicon by atomic layer deposition for advanced gate dielectrics applications , 2003 .

[34]  R. Nieminen,et al.  Density-functional calculations of defect formation energies using supercell methods: Defects in diamond , 2005 .

[35]  G. Ceder,et al.  First-principles study of native point defects in ZnO , 2000 .

[36]  Je-Hun Lee,et al.  Thermal stability and structural characteristics of HfO2 films on Si (100) grown by atomic-layer deposition , 2002 .

[37]  Seokhoon Kim,et al.  Characteristics of HfO2 thin films grown by plasma atomic layer deposition , 2005 .

[38]  David A. Muller,et al.  Correlation of annealing effects on local electronic structure and macroscopic electrical properties for HfO2 deposited by atomic layer deposition , 2003 .

[39]  Seiichi Miyazaki,et al.  Characterization of high-k gate dielectric/silicon interfaces , 2002 .

[40]  M. Houssa High k Gate Dielectrics , 2003 .

[41]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry , 1999 .

[42]  A. Shluger,et al.  Vacancy and interstitial defects in hafnia , 2002 .

[43]  David Vanderbilt,et al.  First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide , 2002 .

[44]  E. Cartier,et al.  Threshold voltage instabilities in high-/spl kappa/ gate dielectric stacks , 2005, IEEE Transactions on Device and Materials Reliability.

[45]  David Vanderbilt,et al.  Phonons and lattice dielectric properties of zirconia , 2001, cond-mat/0108491.

[46]  J. Coey,et al.  Thin films: Unexpected magnetism in a dielectric oxide , 2004, Nature.

[47]  John Robertson,et al.  Defect energy levels in HfO2 high-dielectric-constant gate oxide , 2005 .

[48]  R. Nieminen,et al.  Ab initio study of fully relaxed divacancies in GaAs. , 1996, Physical review. B, Condensed matter.

[49]  S. Louie,et al.  Structural properties and quasiparticle band structure of zirconia , 1998 .

[50]  A. Zunger,et al.  n -type doping of CuIn Se 2 and CuGa Se 2 , 2005 .

[51]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[52]  Martin M. Frank,et al.  Absence of magnetism in hafnium oxide films , 2005 .

[53]  Northrup,et al.  Compensation of p-type doping in ZnSe: The role of impurity-native defect complexes. , 1995, Physical review letters.

[54]  Pantelides,et al.  Native defects and self-compensation in ZnSe. , 1992, Physical review. B, Condensed matter.

[55]  A. Stesmans,et al.  Trap-assisted tunneling in high permittivity gate dielectric stacks , 2000 .

[56]  S. Sanvito,et al.  Ferromagnetism driven by intrinsic point defects in HfO(2). , 2005, Physical review letters.

[57]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[58]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[59]  J. Robertson,et al.  Point defects in ZrO/sub 2/ high-/spl kappa/ gate oxide , 2005, IEEE Transactions on Device and Materials Reliability.

[60]  A. Stesmans,et al.  Variation in the fixed charge density of SiOx/ZrO2 gate dielectric stacks during postdeposition oxidation , 2000 .