Packing a multidisperse system of hard disks in a circular environment.

We consider the problem of finding the densest closed packing of hard disks with proposed different radii in a circular environment, such that the radius of the circumcircle is minimal. With our approach, we are able to find denser packings for various problem instances than known from the literature. Both for the dynamics of the simulation and for the optimum values of the radii of the circumcircles, we find various scaling laws.

[1]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[2]  J. M. Singer,et al.  Bouncing towards the optimum: Improving the results of Monte Carlo optimization algorithms , 1998 .

[3]  Patric R. J. Östergård,et al.  Dense packings of congruent circles in a circle , 1998, Discret. Math..

[4]  Leo Moser Notes on Number Theory II : On a theorem of van der Waerden , 1960, Canadian Mathematical Bulletin.

[5]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[6]  Simple monoclinic crystal phase in suspensions of hard ellipsoids. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  F. Fodor The Densest Packing of 19 Congruent Circles in a Circle , 1999 .

[8]  B. Berg,et al.  Multicanonical algorithms for first order phase transitions , 1991 .

[9]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[10]  Berend Smit,et al.  Commensurate ‘freezing’ of alkanes in the channels of a zeolite , 1995 .

[11]  Günther Stattenberger,et al.  On the Neighborhood Structure of the Traveling Salesman Problem Generated by Local Search Moves , 2007 .

[12]  Johannes J. Schneider,et al.  Searching for Backbones — An Efficient Parallel Algorithm for Finding Groundstates in Spin Glass Models , 2004 .

[13]  F. Stillinger,et al.  Improving the Density of Jammed Disordered Packings Using Ellipsoids , 2004, Science.

[14]  K. Binder,et al.  Ordering of two-dimensional crystals confined in strips of finite width. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Gerhard W. Dueck,et al.  Threshold accepting: a general purpose optimization algorithm appearing superior to simulated anneal , 1990 .

[16]  Bernardetta Addis,et al.  Efficiently packing unequal disks in a circle , 2008, Oper. Res. Lett..

[17]  D. A. Saville,et al.  Colloidal Dispersions: ACKNOWLEDGEMENTS , 1989 .

[18]  Joseph O'Rourke,et al.  Computational geometry in C (2nd ed.) , 1998 .

[19]  Fionn Murtagh,et al.  Identifying the ultrametricity of time series , 2005 .

[20]  N. J. A. Sloane,et al.  The Packing of Spheres , 1984 .

[21]  Giorgio Parisi,et al.  On the approach to the equilibrium and the equilibrium properties of a glass-forming model , 1998 .

[22]  A. Gervois,et al.  Geometrical properties of disordered packings of hard disks , 1986 .

[23]  P. Doussal,et al.  Ultrametricity Transition in the Graph Colouring Problem , 1986 .

[24]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[25]  S. Torquato Random Heterogeneous Materials , 2002 .

[26]  G. Dueck,et al.  Record Breaking Optimization Results Using the Ruin and Recreate Principle , 2000 .

[27]  Salvatore Torquato,et al.  Bounds on the conductivity of a random array of cylinders , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[28]  Levin,et al.  Cooling-rate dependence for the spin-glass ground-state energy: Implications for optimization by simulated annealing. , 1986, Physical review letters.

[29]  J. Fontanari,et al.  Stochastic versus deterministic update in simulated annealing , 1990 .

[30]  R. Zallen,et al.  The Physics of Amorphous Solids: ZALLEN:PHYSICS OF AMORPHO O-BK , 2005 .

[31]  Hajime Yoshino,et al.  Exchange Monte Carlo Dynamics in the SK Model , 1998 .

[32]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[33]  J. M. Singer,et al.  Searching for backbones — an efficient parallel algorithm for the traveling salesman problem , 1996 .

[34]  Johannes Schneider,et al.  Searching for Backbones--a high-performance parallel algorithm for solving combinatorial optimization problems , 2003, Future Gener. Comput. Syst..

[35]  Ingo Morgenstern,et al.  OPTIMIZATION OF PRODUCTION PLANNING PROBLEMS A CASE STUDY FOR ASSEMBLY LINES , 2000 .

[36]  F. Stillinger,et al.  Concerning maximal packing arrangements of binary disk mixtures , 2004 .