LOCAL ERROR BOUNDS FOR POST-PROCESSED FINITE ELEMENT CALCULATIONS
暂无分享,去创建一个
Ian H. Sloan | I. Sloan | D. Kelly | D. W. Kelly | T. Cao | T. Cao
[1] Ivo Babuška,et al. Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .
[2] D. Kelly,et al. The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .
[3] R. Rannacher,et al. A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .
[4] J. D. Isles,et al. A posteriori pointwise upper bound error estimates in the finite element method , 1993 .
[5] J. Oden,et al. A procedure for a posteriori error estimation for h-p finite element methods , 1992 .
[6] Mark Ainsworth,et al. Post-processing with computable error bounds for the finite element approximation of a nonlinear heat conduction problem , 1997 .
[7] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[8] Ian H. Sloan,et al. Computable error bounds for pointwise derivatives of a Neumann problem , 1998 .
[9] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[10] Ivo Babuška,et al. A posteriori estimation and adaptive control of the pollution error in the h‐version of the finite element method , 1995 .
[11] Ivo Babuška,et al. The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .
[12] Mark Ainsworth,et al. A posteriori error estimators for second order elliptic systems part 2. An optimal order process for calculating self-equilibrating fluxes , 1993 .
[13] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .