LOCAL ERROR BOUNDS FOR POST-PROCESSED FINITE ELEMENT CALCULATIONS

In this paper we produce tight guaranteed bounds for the error in the pointwise values of the derivatives of a post-processed nite element solution to a potential ow problem. The aim is to produce a tight envelope of certainty within which the exact value is guaranteed to lie. Our numerical experiments produce narrow envelopes at interior points and at points close to or on the boundary.

[1]  Ivo Babuška,et al.  Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .

[2]  D. Kelly,et al.  The self‐equilibration of residuals and complementary a posteriori error estimates in the finite element method , 1984 .

[3]  R. Rannacher,et al.  A feed-back approach to error control in finite element methods: application to linear elasticity , 1997 .

[4]  J. D. Isles,et al.  A posteriori pointwise upper bound error estimates in the finite element method , 1993 .

[5]  J. Oden,et al.  A procedure for a posteriori error estimation for h-p finite element methods , 1992 .

[6]  Mark Ainsworth,et al.  Post-processing with computable error bounds for the finite element approximation of a nonlinear heat conduction problem , 1997 .

[7]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[8]  Ian H. Sloan,et al.  Computable error bounds for pointwise derivatives of a Neumann problem , 1998 .

[9]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[10]  Ivo Babuška,et al.  A posteriori estimation and adaptive control of the pollution error in the h‐version of the finite element method , 1995 .

[11]  Ivo Babuška,et al.  The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .

[12]  Mark Ainsworth,et al.  A posteriori error estimators for second order elliptic systems part 2. An optimal order process for calculating self-equilibrating fluxes , 1993 .

[13]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .