THE METALLICITY OF THE MONOCEROS STREAM

We present low-resolution MMT Hectospec spectroscopy of 594 candidate Monoceros stream member stars. Based on strong color–magnitude diagram overdensities, we targeted three fields within the stream's footprint, with 178° ⩽ l ⩽ 203° and −25° ⩽ b ⩽ 25°. By comparing the measured iron abundances with those expected from smooth Galactic components alone, we measure, for the first time, the spectroscopic metallicity distribution function for Monoceros. We find the stream to be chemically distinct from both the thick disk and halo, with [Fe/H] = −1, and do not detect a trend in the stream's metallicity with Galactic longitude. Passing from b = +25° to b = −25°, the median Monoceros metallicity trends upward by 0.1 dex, though uncertainties in modeling sample contamination by the disk and halo make this a marginal detection. In each field, we find Monoceros to have an intrinsic [Fe/H] dispersion of 0.10–0.22 dex. From the Ca ii K line, we measure [Ca/Fe] for a subsample of metal-poor program stars with −1.1 < [Fe/H] < −0.5. In two of three fields, we find calcium deficiencies qualitatively similar to previously reported [Ti/Fe] underabundances in Monoceros and the Sagittarius tidal stream. Further, using 90 spectra of thick disk stars in the Monoceros pointings with b ≈ ±25°, we detect a 0.22 dex north/south metallicity asymmetry coincident with known stellar density asymmetry at RGC ≈ 12 kpc and |Z| ≈ 1.7 kpc. Our median Monoceros [Fe/H] = −1.0 and its relatively low dispersion naturally fit the expectation for an appropriately luminous MV ∼ − 13 dwarf galaxy progenitor.

[1]  S. Majewski,et al.  KINEMATICS AND CHEMISTRY OF STARS ALONG THE SAGITTARIUS TRAILING TIDAL TAIL AND CONSTRAINTS ON THE MILKY WAY MASS DISTRIBUTION , 2011, 1111.0014.

[2]  S. Shectman,et al.  THE ABUNDANCES OF NEUTRON-CAPTURE SPECIES IN THE VERY METAL-POOR GLOBULAR CLUSTER M15: A UNIFORM ANALYSIS OF RED GIANT BRANCH AND RED HORIZONTAL BRANCH STARS , 2011, 1103.1008.

[3]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[4]  Ž. Ivezić,et al.  THE SHAPE AND PROFILE OF THE MILKY WAY HALO AS SEEN BY THE CANADA–FRANCE–HAWAII TELESCOPE LEGACY SURVEY , 2010, 1011.4487.

[5]  I. Chilingarian,et al.  Dynamical versus stellar masses of ultracompact dwarf galaxies in the Fornax cluster , 2010, 1011.1852.

[6]  Mark I. Wilkinson,et al.  CHEMICAL ENRICHMENT IN THE FAINTEST GALAXIES: THE CARBON AND IRON ABUNDANCE SPREADS IN THE BOÖTES I DWARF SPHEROIDAL GALAXY AND THE SEGUE 1 SYSTEM , 2010, 1008.0137.

[7]  K. Cunha,et al.  THE CHEMICAL EVOLUTION OF THE MONOCEROS RING/GALACTIC ANTICENTER STELLAR STRUCTURE , 2010, 1007.1056.

[8]  S. Keller,et al.  THE CHEMISTRY OF THE TRAILING ARM OF THE SAGITTARIUS DWARF GALAXY , 2010, 1006.4885.

[9]  S. Majewski,et al.  THE SAGITTARIUS DWARF GALAXY: A MODEL FOR EVOLUTION IN A TRIAXIAL MILKY WAY HALO , 2010, 1003.1132.

[10]  Doug Geisler,et al.  A TWO MICRON ALL SKY SURVEY VIEW OF THE SAGITTARIUS DWARF GALAXY. VI. s-PROCESS AND TITANIUM ABUNDANCE VARIATIONS ALONG THE SAGITTARIUS STREAM , 2009, 0911.4364.

[11]  Garching,et al.  Intrinsic iron spread and a new metallicity scale for globular clusters , 2009, 0910.0675.

[12]  Ž. Ivezić,et al.  STRUCTURE AND KINEMATICS OF THE STELLAR HALOS AND THICK DISKS OF THE MILKY WAY BASED ON CALIBRATION STARS FROM SLOAN DIGITAL SKY SURVEY DR7 , 2009, 0909.3019.

[13]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[14]  Z. Ivezic,et al.  THE MILKY WAY TOMOGRAPHY WITH SDSS. III. STELLAR KINEMATICS , 2009, 0909.0013.

[15]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[16]  Mamoru Doi,et al.  The Milky Way Tomography with SDSS. II. Stellar Metallicity , 2008, 0804.3850.

[17]  B. Robertson,et al.  On the Origin of Dynamically Cold Rings around the Milky Way , 2008, 0802.0872.

[18]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[19]  Australian National University,et al.  THE SEGUE STELLAR PARAMETER PIPELINE. I. DESCRIPTION AND COMPARISON OF INDIVIDUAL METHODS , 2007, 0710.5645.

[20]  Robert A. Shaw,et al.  Astronomical data analysis software and systems IV : meeting held at Baltimore, Maryland, 25-28 September 1994 , 1995 .

[21]  University of Michigan,et al.  Accepted for publication in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 03/07/07 TRACING THE GALACTIC THICK DISK TO SOLAR METALLICITIES 1 , 2022 .

[22]  M. Irwin,et al.  The AAT/WFI survey of the Monoceros Ring and Canis Major dwarf galaxy – I. From l= (193–276)° , 2007, astro-ph/0701664.

[23]  U. Cambridge,et al.  Outer structure of the Galactic warp and flare: explaining the Canis Major over-density , 2006, astro-ph/0603385.

[24]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[25]  H. Rix,et al.  A Comprehensive Model for the Monoceros Tidal Stream , 2004, astro-ph/0410448.

[26]  J. Meléndez,et al.  Abundances in a Large Sample of Stars in M3 and M13 , 2004, astro-ph/0409725.

[27]  David G. Monet,et al.  An Improved Proper-Motion Catalog Combining USNO-B and the Sloan Digital Sky Survey , 2004 .

[28]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003, astro-ph/0401052.

[29]  P. Frinchaboy,et al.  Exploring Halo Substructure with Giant Stars: Spectroscopy of Stars in the Galactic Anticenter Stellar Structure , 2003, astro-ph/0307505.

[30]  M. F. Skrutskie,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms , 2003, astro-ph/0304198.

[31]  S. Lucatello,et al.  Abundances for metal-poor stars with accurate parallaxes , I. Basic data , 2003, astro-ph/0303653.

[32]  D. Lamb,et al.  A Low-Latitude Halo Stream around the Milky Way , 2003, astro-ph/0301029.

[33]  Heather A. Rave,et al.  The Ghost of Sagittarius and Lumps in the Halo of the Milky Way , 2001, astro-ph/0111095.

[34]  Judith G. Cohen,et al.  Calibration of the CH and CN Variations Among Main-Sequence Stars in M71 and in M13 , 2001, astro-ph/0104099.

[35]  J. Fulbright Abundances and Kinematics of Field Halo and Disk Stars. I. Observational Data and Abundance Analysis , 2000, astro-ph/0006260.

[36]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[37]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[38]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .