A massively parallel computation strategy for FDTD: time and space parallelism applied to electromagnetics problems

We present a novel strategy for incorporating massive parallelism into the solution of Maxwell's equations using finite-difference time-domain methods. In a departure from previous techniques wherein spatial parallelism is used, our approach exploits massive temporal parallelism by computing all of the time steps in parallel. Furthermore, in contrast to other methods which appear to concentrate on explicit schemes such as Yee's (1966) algorithm, our strategy uses the implicit Crank-Nicolson technique which provides superior numerical properties. We show that the use of temporal parallelism results in algorithms which offer a massive degree of coarse grain parallelism with minimum communication and synchronization requirements. Due to these features, the time-parallel algorithms are particularly suitable for implementation on emerging massively parallel multiple instruction-multiple data (MIMD) architectures. The methodology is applied to a circular cylindrical configuration, which serves as a testbed problem for the approach, to demonstrate the massive parallelism that can be exploited. We also discuss the generalization of the methodology for more complex problems.

[1]  Vijaya Shankar,et al.  CFD spinoff - Computational electromagnetics for radar cross section (RCS) studies , 1990 .

[2]  F. Manshadi,et al.  Hypercube matrix computation task , 1987 .

[3]  Oliver A. McBryan,et al.  Hypercube Algorithms and Implementations , 1985, PPSC.

[4]  A. Taflove,et al.  Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section , 1989, Proc. IEEE.

[5]  E. K. Miller Solving bigger problems-by decreasing the operation count and increasing the computation bandwidth , 1991, Proc. IEEE.

[6]  D. J. Evans,et al.  Alternating group explicit method for the diffusion equation , 1985 .

[7]  Vijaya Shankar,et al.  Computation of electromagnetic scattering and radiation using a time-domain finite-volume discretization procedure , 1991 .

[8]  David E Womble A Time-Stepping Algorithm for Parallel Computers , 1990, SIAM J. Sci. Comput..

[9]  B. S. Garbow,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[10]  Yousef Saad,et al.  On the parallel solution of parabolic equations , 1989, ICS '89.

[11]  Harold S. Stone,et al.  A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations , 1973, IEEE Transactions on Computers.

[12]  Amir Fijany,et al.  Massively parallel algorithms for solution of the Schrodinger equation , 1994, Proceedings of 8th International Parallel Processing Symposium.

[13]  Amir Fijany,et al.  Time-parallel solution of linear partial differential equations on the Intel Touchstone Delta supercomputer , 1994, Concurr. Pract. Exp..

[14]  Janusz S. Kowalik High-Speed Computation , 1984 .

[15]  Brian T. Smith,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[16]  Steven M. Serbin A Scheme for Parallelizing Certain Algorithms for the Linear Inhomogeneous Heat Equation , 1992, SIAM J. Sci. Comput..

[17]  Sergio Pissanetzky,et al.  Sparse Matrix Technology , 1984 .

[18]  Alberto L. Sangiovanni-Vincentelli,et al.  The Waveform Relaxation Method for Time-Domain Analysis of Large Scale Integrated Circuits , 1982, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[19]  Tom Cwik,et al.  Concurrent electromagnetic scattering analysis , 1989 .

[20]  Amir Fijany Time Parallel Algorithms for Solution of Linear Parabolic PDEs , 1993, 1993 International Conference on Parallel Processing - ICPP'93.

[21]  Harry A. Dwyer,et al.  Finite-difference algorithms for the time-domain Maxwell's equations - A numerical approach to RCS analysis , 1992 .

[22]  C. Loan Computational Frameworks for the Fast Fourier Transform , 1992 .

[23]  David E. Worley A time-stepping algorithm for parallel computers , 1990 .

[24]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[25]  Stefan Vandewalle,et al.  The Parallel Performance of Standard Parabolic Marching Schemes , 1991, Int. J. High Speed Comput..

[26]  K. K. Mei,et al.  Calculations of the dispersive characteristics of microstrips by the time-domain finite difference method , 1988 .

[27]  A. Taflove,et al.  Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations , 1975 .

[28]  Stefan Vandewalle,et al.  Efficient Parallel Algorithms for Solving Initial-Boundary Value and Time-Periodic Parabolic Partial Differential Equations , 1992, SIAM J. Sci. Comput..

[29]  Roland A. Sweet,et al.  The Direct Solution of the Discrete Poisson Equation on a Disk , 1973 .

[30]  Joel H. Saltz,et al.  Towards developing robust algorithms for solving partial differential equations on MIMD machines , 1988, Parallel Comput..

[31]  Naren Gupta,et al.  Simulation of radiation from a microstrip antenna using three-dimensional finite-difference time-dom , 1993 .

[32]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[33]  B. S. Garbow,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[34]  D. Givoli Non-reflecting boundary conditions , 1991 .

[35]  Ralf Knirsch,et al.  A time-parallel multigrid-extrapolation method for parabolic partial differential equations , 1992, Parallel Comput..

[36]  Allen Taflove,et al.  A Novel Method to Analyze Electromagnetic Scattering of Complex Objects , 1982, IEEE Transactions on Electromagnetic Compatibility.

[37]  Wolfgang Hackbusch,et al.  Fast Numerical Solution of Time-Periodic Parabolic Problems by a Multigrid Method , 1981 .

[38]  J. Ortega,et al.  Solution of Partial Differential Equations on Vector and Parallel Computers , 1987 .