Heat resistance of Cronobacter sakazakii DPC 6529 and its behavior in reconstituted powdered infant formula

[1]  Liwei,et al.  Isolation and molecular typing of Cronobacter spp. in commercial powdered infant formula and follow-up formula. , 2014 .

[2]  C. Hill,et al.  Acid stress management by Cronobacter sakazakii. , 2014, International journal of food microbiology.

[3]  S. Forsythe,et al.  Cronobacter spp. as emerging causes of healthcare-associated infection. , 2014, The Journal of hospital infection.

[4]  Zhaoxin Lu,et al.  Isolation, identification and antimicrobial resistance of Cronobacter spp. isolated from various foods in China , 2014 .

[5]  C. Hill,et al.  Transposon mutagenesis reveals genes involved in osmotic stress and drying in Cronobacter sakazakii , 2014 .

[6]  C. Hill,et al.  Investigation of the use of a cocktail of lux-tagged Cronobacter strains for monitoring growth in infant milk formulae. , 2013, Journal of food protection.

[7]  S. Forsythe,et al.  Multilocus sequence typing of Cronobacter spp. from powdered infant formula and milk powder production factories , 2013 .

[8]  P. Fernández,et al.  Effect of the medium characteristics and the heating and cooling rates on the nonisothermal heat resistance of Bacillus sporothermodurans IC4 spores. , 2013, Food microbiology.

[9]  F. Pagotto,et al.  Thermal tolerance and survival of Cronobacter sakazakii in powdered infant formula supplemented with vanillin, ethyl vanillin, and vanillic acid. , 2012, Journal of food science.

[10]  C. Hill,et al.  Polymorphisms in rpoS and Stress Tolerance Heterogeneity in Natural Isolates of Cronobacter sakazakii , 2012, Applied and Environmental Microbiology.

[11]  R. P. Ross,et al.  Cronobacter spp. in powdered infant formula. , 2012, Journal of food protection.

[12]  F. Pagotto,et al.  Effect of vanillin, ethyl vanillin, and vanillic acid on the growth and heat resistance of Cronobacter species. , 2011, Journal of food protection.

[13]  Ľ. Tóthová,et al.  Analysis of the DNA region mediating increased thermotolerance at 58°C in Cronobacter sp. and other enterobacterial strains , 2011, Antonie van Leeuwenhoek.

[14]  R. P. Ross,et al.  Real-time monitoring of luciferase-tagged Cronobacter sakazakii in reconstituted infant milk formula. , 2011, Journal of food protection.

[15]  G. Duffy,et al.  Survival characteristics of environmental and clinically derived strains of Cronobacter sakazakii in infant milk formula (IMF) and ingredients , 2011, Journal of applied microbiology.

[16]  M. W. Reij,et al.  A study into the occurrence of Cronobacter spp. in The Netherlands between 2001 and 2005 , 2010 .

[17]  N. Binsztein,et al.  Characterization and subtyping of Cronobacter spp. from imported powdered infant formulae in Argentina. , 2009, International journal of food microbiology.

[18]  S. Forsythe,et al.  International survey of Cronobacter sakazakii and other Cronobacter spp. in follow up formulas and infant foods. , 2009, International journal of food microbiology.

[19]  M. W. Reij,et al.  Growth of Cronobacter spp. under dynamic temperature conditions occurring during cooling of reconstituted powdered infant formula. , 2009, Journal of food protection.

[20]  S. Condón,et al.  Thermobacteriological characterization of Enterobacter sakazakii. , 2009, International journal of food microbiology.

[21]  D. Kang,et al.  Resistance of Enterobacter sakazakii (Cronobacter spp.) to environmental stresses , 2009, Journal of applied microbiology.

[22]  M. Chiang,et al.  The effect of temperature and length of heat shock treatment on the thermal tolerance and cell leakage of Cronobacter sakazakii BCRC 13988. , 2009, International journal of food microbiology.

[23]  R. Holley,et al.  Heat resistance of Cronobacter species (Enterobacter sakazakii) in milk and special feeding formula , 2009, Journal of applied microbiology.

[24]  M. Friedemann Epidemiology of invasive neonatal Cronobacter (Enterobacter sakazakii) infections , 2009, European Journal of Clinical Microbiology & Infectious Diseases.

[25]  A. Esnoz,et al.  Nonisothermal heat resistance determinations with the thermoresistometer Mastia , 2009, Journal of applied microbiology.

[26]  Mengshi Lin,et al.  THERMAL RESISTANCE, SURVIVAL AND INACTIVATION OF ENTEROBACTER SAKAZAKII (CRONOBACTER SPP.) IN POWDERED AND RECONSTITUTED INFANT FORMULA , 2009 .

[27]  Stefan Nord,et al.  The RimP protein is important for maturation of the 30S ribosomal subunit. , 2009, Journal of molecular biology.

[28]  P. Whyte,et al.  Dissemination of Cronobacter spp. (Enterobacter sakazakii) in a Powdered Milk Protein Manufacturing Facility , 2008, Applied and Environmental Microbiology.

[29]  Edward M. Fox,et al.  Enterobacter sakazakii survives spray drying , 2008 .

[30]  S. Forsythe,et al.  Dry stress and survival time of Enterobacter sakazakii and other Enterobacteriaceae in dehydrated powdered infant formula. , 2007, Journal of food protection.

[31]  T. Morita-Ishihara,et al.  Genetic Characterization of Thermal Tolerance in Enterobacter sakazakii , 2007, Microbiology and immunology.

[32]  M. Kleerebezem,et al.  Luciferase Detection during Stationary Phase in Lactococcus lactis , 2007, Applied and Environmental Microbiology.

[33]  P. Whyte,et al.  Application of pulsed-field gel electrophoresis to characterise and trace the prevalence of Enterobacter sakazakii in an infant formula processing facility. , 2007, International journal of food microbiology.

[34]  C. Braden,et al.  Invasive Enterobacter sakazakii Disease in Infants , 2006, Emerging infectious diseases.

[35]  M. Peleg Isothermal Microbial Heat Inactivation , 2006 .

[36]  L. Beuchat,et al.  Enterobacter sakazakii: a coliform of increased concern to infant health. , 2005, International journal of food microbiology.

[37]  A H Geeraerd,et al.  GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. , 2005, International journal of food microbiology.

[38]  S. Forsythe,et al.  Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products , 2004 .

[39]  D. Hoover,et al.  Use of Weibull model to describe and predict pressure inactivation of Listeria monocytogenes Scott A in whole milk , 2004 .

[40]  S. Foster,et al.  Role of a Cysteine Synthase in Staphylococcus aureus , 2004, Journal of bacteriology.

[41]  R. Buchanan,et al.  Thermal inactivation of Enterobacter sakazakii in rehydrated infant formula. , 2004, Journal of food protection.

[42]  P. Breeuwer,et al.  Desiccation and heat tolerance of Enterobacter sakazakii , 2003, Journal of applied microbiology.

[43]  I. Leguerinel,et al.  On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. , 2001, International journal of food microbiology.

[44]  H. Nikaido,et al.  Protein folding in the periplasm in the absence of primary oxidant DsbA: modulation of redox potential in periplasmic space via OmpL porin , 2000, The EMBO journal.

[45]  Pablo S. Fernández,et al.  Application of a frequency distribution model to describe the thermal inactivation of two strains of Bacillus cereus , 1999 .

[46]  J. Farber,et al.  Thermal resistance of Enterobacter sakazakii in reconstituted dried‐infant formula , 1997, Letters in applied microbiology.

[47]  J. Prosser,et al.  Luminescence-based detection of activity of starved and viable but nonculturable bacteria , 1994, Applied and environmental microbiology.

[48]  R. Schwalbe,et al.  Nosocomial bacteremia caused by Enterobacter sakazakiki and Leuconostoc mesenteroides resulting from extrinsic contamination of infant formula. , 1990, The Pediatric infectious disease journal.

[49]  H L Muytjens,et al.  Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae , 1988, Journal of clinical microbiology.

[50]  W. D. Bigelow,et al.  The logarithmic nature of thermal death time curves , 1921 .