Facteurs des suites de Rudin-Shapiro généralisées
暂无分享,去创建一个
[1] Mireille Bousquet-Mélou,et al. Canonical Positions for the Factors in Paperfolding Sequences , 1994, Theor. Comput. Sci..
[2] Jean Berstel,et al. A Geometric Proof of the Enumeration Formula for Sturmian Words , 1993, Int. J. Algebra Comput..
[3] Jean-Paul Allouche,et al. The number of factors in a paperfolding sequence , 1992, Bulletin of the Australian Mathematical Society.
[4] Jean-Paul Allouche,et al. Generalized Rudin-Shapiro sequences , 1991 .
[5] Filippo Mignosi. Sturmian Words and Ambigous Context-Free Languages , 1990, Int. J. Found. Comput. Sci..
[6] S. Dulucq,et al. On the factors of the Sturmian sequences , 1990 .
[7] Jeffrey Shallit,et al. The Ring of k-Regular Sequences , 1990, Theor. Comput. Sci..
[8] Dominique Gouyou-Beauchamps,et al. Sur les Facteurs des Suites de Sturm , 1990, Theor. Comput. Sci..
[9] M. Queffélec,et al. Une nouvelle propriété des suites de Rudin-Shapiro , 1987 .
[10] J. Kahane. Some Random Series of Functions , 1985 .
[11] Gérald Tenenbaum,et al. Dimension des courbes planes, papiers plies et suites de Rudin-Shapiro , 1981 .
[12] Helmut Prodinger,et al. Infinite 0-1-sequences without long adjacent identical blocks , 1979, Discret. Math..
[13] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[14] L. Carlitz,et al. Note on the Shapiro polynomials , 1970 .
[15] Walter Rudin,et al. Some theorems on Fourier coefficients , 1959 .
[16] F. H. Young. Transformations of Fourier coefficients , 1952 .
[17] H. Shapiro,et al. Extremal problems for polynomials and power series , 1951 .