Verifying CSP-OZ-DC Specifications with Complex Data Types and Timing Parameters

We extend existing verification methods for CSP-OZ-DC to reason about real-time systems with complex data types and timing parameters. We show that important properties of systems can be encoded in well-behaved logical theories in which hierarchic reasoning is possible. Thus, testing invariants and bounded model checking can be reduced to checking satisfiability of ground formulae over a simple base theory. We illustrate the ideas by means of a simplified version of a case study from the European Train Control System standard.

[1]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[2]  Silvio Ghilardi,et al.  Model-Theoretic Methods in Combined Constraint Satisfiability , 2004, Journal of Automated Reasoning.

[3]  Viorica Sofronie-Stokkermans,et al.  Applications of Hierarchical Reasoning in the Verification of Complex Systems , 2007, Electron. Notes Theor. Comput. Sci..

[4]  Michael R. Hansen,et al.  Duration Calculus , 2004, Monographs in Theoretical Computer Science An EATCS Series.

[5]  Holger Hermanns,et al.  From StoCharts to MoDeST: a comparative reliability analysis of train radio communications , 2005, WOSP '05.

[6]  Graeme Smith,et al.  An Integration of Real-Time Object-Z and CSP for Specifying Concurrent Real-Time Systems , 2002, IFM.

[7]  Roland Meyer,et al.  Model Checking Data-Dependent Real-Time Properties of the European Train Control System , 2006, 2006 Formal Methods in Computer Aided Design.

[8]  Kamel Barkaoui,et al.  Theoretical Aspects of Computing - ICTAC 2006, Third International Colloquium, Tunis, Tunisia, November 20-24, 2006, Proceedings , 2006, ICTAC.

[9]  Roland Meyer,et al.  Model Checking Duration Calculus: A Practical Approach , 2006, ICTAC.

[10]  Andrew William Roscoe,et al.  The Theory and Practice of Concurrency , 1997 .

[11]  Carsten Sühl An Overview of the Integrated Formalism RT-Z , 2002, Formal Aspects of Computing.

[12]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[13]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[14]  Jin Song Dong,et al.  Overview of the Semantics of TCOZ , 1999, IFM.

[15]  Harald Ganzinger,et al.  Modular proof systems for partial functions with Evans equality , 2006, Inf. Comput..

[16]  Graham Steel,et al.  Deduction with XOR Constraints in Security API Modelling , 2005, CADE.

[17]  Jochen Hoenicke,et al.  Combination of processes, data, and time , 2006 .

[18]  Graeme Smith,et al.  The Object-Z Specification Language , 1999, Advances in Formal Methods.

[19]  Jan Trowitzsch,et al.  Using UML state machines and petri nets for the quantitative investigation of ETCS , 2006, valuetools '06.

[20]  Jochen Hoenicke,et al.  Model-Checking of Specifications Integrating Processes, Data and Time , 2005, FM.

[21]  Viorica Sofronie-Stokkermans Interpolation in Local Theory Extensions , 2006, IJCAR.

[22]  Jochen Hoenicke,et al.  CSP-OZ-DC: A Combination of Specification Techniques for Processes, Data and Time , 2002, Nord. J. Comput..

[23]  Viorica Sofronie-Stokkermans,et al.  Hierarchic Reasoning in Local Theory Extensions , 2005, CADE.

[24]  Ian J. Hayes,et al.  FM 2005: Formal Methods, International Symposium of Formal Methods Europe, Newcastle, UK, July 18-22, 2005, Proceedings , 2005, FM.

[25]  Greg Nelson,et al.  Simplification by Cooperating Decision Procedures , 1979, TOPL.