Information theoretic subset selection for neural network models

[1]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[2]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[3]  渡辺 慧,et al.  Knowing and guessing : a quantitative study of inference and information , 1969 .

[4]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[5]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[6]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[7]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[8]  Peter Seitz,et al.  Minimum class entropy: A maximum information approach to layered networks , 1989, Neural Networks.

[9]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[10]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[11]  Todd K. Leen,et al.  Hebbian feature discovery improves classifier efficiency , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[12]  N. V. Bhat,et al.  Use of neural nets for dynamic modeling and control of chemical process systems , 1990 .

[13]  J. Stephen Judd,et al.  Neural network design and the complexity of learning , 1990, Neural network modeling and connectionism.

[14]  Ehud D. Karnin,et al.  A simple procedure for pruning back-propagation trained neural networks , 1990, IEEE Trans. Neural Networks.

[15]  Sholom M. Weiss,et al.  Computer Systems That Learn , 1990 .

[16]  Alan J. Miller,et al.  Subset Selection in Regression , 1991 .

[17]  Guy A. Dumont,et al.  Classification of acoustic emission signals via Hebbian feature extraction , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[18]  Donald F. Specht,et al.  A general regression neural network , 1991, IEEE Trans. Neural Networks.

[19]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[20]  N. V. Bhat,et al.  determining model structure for neural models by network stripping , 1992 .

[21]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[22]  Manfred Morari,et al.  PLS/neural networks , 1992 .

[23]  Ka-Yiu San,et al.  Process identification using neural networks , 1992 .

[24]  Martin Fodslette Møller,et al.  A scaled conjugate gradient algorithm for fast supervised learning , 1993, Neural Networks.

[25]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[26]  Eric B. Bartlett,et al.  Dynamic node architecture learning: An information theoretic approach , 1994, Neural Networks.

[27]  Eric B. Bartlett,et al.  Self determination of input variable importance using neural networks , 1994, Neural Parallel Sci. Comput..

[28]  Paul J. Werbos,et al.  The roots of backpropagation , 1994 .

[29]  Anujit Basu,et al.  Nuclear plant diagnostics using neural networks with dynamic input selection , 1995 .

[30]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .