A photoluminescence study of poly(phenylene vinylene) derivatives: The effect of intrinsic persistence length

We report the results of light scattering, absorption, excitation, and emission spectroscopy of three polyphenylene vinylene (PPV) derivatives; poly[2‐methoxy, 5‐(2’‐ethyl‐hexyloxy‐p‐phenylene‐ vinylene] (MEH‐PPV), poly[2‐butoxy, 5‐(2’‐ethyl‐hexyloxy‐p‐phenylene‐vinylene] (BEH‐PPV), and poly[2‐dicholestanoxy‐p‐phenylene‐vinylene] (BCHA‐PPV) in solution with p‐xylene. We find that increasing the size of the solubilizing side chains increases the intrinsic persistence length of the polyphenylene vinylene backbone and that this change in stiffness has dramatic effects on the photoluminescence of polyphenylene vinylene. We have determined the luminescence quantum efficiencies of the polyphenylene vinylene derivatives relative to a known standard, Rhodamine 6G, and find that the photoluminescence can be greatly enhanced by increasing the intrinsic stiffness of the polymer backbone. The stiffest polymer, poly[2‐dicholestanoxy‐p‐phenylene‐vinylene] (BCHA‐PPV), has a quantum efficiency of 0.66±0.05. The quantum e...

[1]  John E. Bowers,et al.  Time‐resolved photoluminescence from poly[2‐methoxy, 5‐(2’‐ethyl‐hexyloxy)‐p‐phenylene‐vinylene]: Solutions, gels, films, and blends , 1993 .

[2]  D. S. Pearson,et al.  Molecular characterization of poly(3-hexylthiophene) , 1991 .

[3]  Voss,et al.  Enhanced order and electronic delocalization in conjugated polymers oriented by gel processing in polyethylene. , 1991, Physical review. B, Condensed matter.

[4]  H. Kroemer,et al.  Persistence length and molecular mass distribution of a thermotropic main-chain liquid-crystal polymer , 1991 .

[5]  Seth R. Marder,et al.  Materials for Nonlinear Optics Chemical Perspectives , 1991 .

[6]  Bradley,et al.  Exciton versus band description of the absorption and luminescence spectra in poly(p-phenylenevinylene). , 1990, Physical review. B, Condensed matter.

[7]  D. Spiegel Forced Rayleigh scattering on a soluble conducting polymer , 1990 .

[8]  A. Heeger,et al.  Theoretical investigation of gas-phase torsion potentials along conjugated polymer backbones: polyacetylene, polydiacetylene, and polythiophene , 1990 .

[9]  S. Ramakrishnan,et al.  The effect of substituent groups on polymer conformation in good solvent: polyoctene and polydecene , 1990 .

[10]  J. Aimé,et al.  Comments on the Chain Conformation of Conjugated Polymers in Solution , 1989 .

[11]  Schott,et al.  Structural study of doped and undoped polythiophene in solution by small-angle neutron scattering. , 1989, Physical review letters.

[12]  M. Cates,et al.  “Conformons”: Self-Localized Electrons in Soluble Conjugated Polymers , 1987 .

[13]  K. Schweizer Order–disorder transitions of π‐conjugated polymers in condensed phases. I. General theory , 1986 .

[14]  D. Camaioni,et al.  Photophysics and cis-trans isomerization of DCM , 1985 .

[15]  M L Lesiecki,et al.  Use of the thermal lens technique to measure the luminescent quantum yields of dyes in PMMA for luminescent solar concentrators. , 1982, Applied optics.

[16]  B. Berne,et al.  Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics , 1976 .

[17]  M. Huglin Light scattering from polymer solutions , 1972 .

[18]  J. Demas,et al.  Measurement of photoluminescence quantum yields. Review , 1971 .

[19]  O. Kratky,et al.  Röntgenuntersuchung gelöster Fadenmoleküle , 1949 .

[20]  C. Tanford Macromolecules , 1994, Nature.