Parameterized complexity of coloring problems: Treewidth versus vertex cover

We compare the fixed parameter complexity of various variants of coloring problems (including List Coloring, Precoloring Extension, Equitable Coloring, L(p,1)-Labeling and Channel Assignment) when parameterized by treewidth and by vertex cover number. In most (but not all) cases we conclude that parametrization by the vertex cover number provides a significant drop in the complexity of the problems.

[1]  Michael R. Fellows,et al.  Graph Layout Problems Parameterized by Vertex Cover , 2008, ISAAC.

[2]  Hirotaka Ono,et al.  A Linear Time Algorithm for L(2, 1)-Labeling of Trees , 2009, ESA.

[3]  Jirí Fiala,et al.  Distance Constrained Labelings of Graphs of Bounded Treewidth , 2005, ICALP.

[4]  Jirí Fiala,et al.  Parameterized Complexity of Coloring Problems: Treewidth versus Vertex Cover , 2009, TAMC.

[5]  Gilbert MURAZ,et al.  L 2 英語摩擦音の知覚における高周波数帯域情報の利用 , 2012 .

[6]  Ravi Kannan,et al.  Minkowski's Convex Body Theorem and Integer Programming , 1987, Math. Oper. Res..

[7]  N. Alon Restricted colorings of graphs , 1993 .

[8]  Hans L. Bodlaender,et al.  Treewidth: Characterizations, Applications, and Computations , 2006, WG.

[9]  Hirotaka Ono,et al.  A Linear Time Algorithm for L(2,1)-Labeling of Trees , 2012, Algorithmica.

[10]  Xiao Zhou,et al.  Generalized Vertex-Colorings of Partial K-Trees , 2000 .

[11]  Daniel Král,et al.  Coloring squares of planar graphs with girth six , 2008, Eur. J. Comb..

[12]  Fedor V. Fomin,et al.  Equitable Colorings of Bounded Treewidth Graphs , 2004, MFCS.

[13]  Zsolt Tuza,et al.  Graph colorings with local constraints - a survey , 1997, Discuss. Math. Graph Theory.

[14]  Laurence A. Wolsey,et al.  Non-standard approaches to integer programming , 2002, Discret. Appl. Math..

[15]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[16]  Saket Saurabh,et al.  Capacitated Domination and Covering: A Parameterized Perspective , 2008, IWPEC.

[17]  P. A. Golovach Systems of pairs of q-distant representatives, and graph colorings , 2005 .

[18]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[19]  Bruce A. Reed,et al.  Channel assignment on graphs of bounded treewidth , 2003, Discret. Math..

[20]  András Frank,et al.  An application of simultaneous diophantine approximation in combinatorial optimization , 1987, Comb..

[21]  Michael R. Fellows,et al.  On the Complexity of Some Colorful Problems Parameterized by Treewidth , 2007, COCOA.

[22]  Magnús M. Halldórsson,et al.  Coloring powers of planar graphs , 2000, SODA '00.

[23]  Roger K. Yeh A survey on labeling graphs with a condition at distance two , 2006, Discret. Math..

[24]  Jirí Fiala,et al.  Computational Complexity of the Distance Constrained Labeling Problem for Trees (Extended Abstract) , 2008, ICALP.

[25]  Martin Tancer,et al.  List-Coloring Squares of Sparse Subcubic Graphs , 2008, SIAM J. Discret. Math..

[26]  Tiziana Calamoneri,et al.  The L(h, k)-Labelling Problem: A Survey and Annotated Bibliography , 2006, Comput. J..

[27]  Arie M. C. A. Koster,et al.  Combinatorial Optimization on Graphs of Bounded Treewidth , 2008, Comput. J..

[28]  Gerard J. Chang,et al.  The L(2, 1)-Labeling Problem on Graphs , 1996, SIAM J. Discret. Math..

[29]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[30]  Michael R. Fellows,et al.  Fixed Parameter Tractability and Completeness , 1992, Complexity Theory: Current Research.

[31]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[32]  Judy Goldsmith,et al.  Nondeterminism Within P , 1993, SIAM J. Comput..