Machine Learning, Neural and Statistical Classification

Survey of previous comparisons and theoretical work descriptions of methods dataset descriptions criteria for comparison and methodology (including validation) empirical results machine learning on machine learning.

[1]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[2]  M. Kendall,et al.  The Advanced Theory of Statistics, Vol. 1: Distribution Theory , 1959 .

[3]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[4]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[5]  J. Andel Sequential Analysis , 2022, The SAGE Encyclopedia of Research Design.

[6]  Ryszard S. Michalski,et al.  On the Quasi-Minimal Solution of the General Covering Problem , 1969 .

[7]  Ryszard S. Michalski,et al.  Discovering Classification Rules Using variable-Valued Logic System VL1 , 1973, IJCAI.

[8]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[9]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[10]  Sidney Marks,et al.  Discriminant Functions When Covariance Matrices are Unequal , 1974 .

[11]  Ryszard S. Michalski,et al.  Selection of Most Representative Training Examples and Incremental Generation of VL1 Hypotheses: The Underlying Methodology and the Description of Programs ESEL and AQ11 , 1978 .

[12]  J. Remme,et al.  A simulative comparison of linear, quadratic and kernel discrimination , 1980 .

[13]  Paul Switzer,et al.  Extensions of linear discriminant analysis for statistical classification of remotely sensed satellite imagery , 1980 .

[14]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[15]  D. Titterington,et al.  Comparison of Discrimination Techniques Applied to a Complex Data Set of Head Injured Patients , 1981 .

[16]  T. Niblett,et al.  AUTOMATIC INDUCTION OF CLASSIFICATION RULES FOR A CHESS ENDGAME , 1982 .

[17]  Patricia L. Smith,et al.  Curve fitting and modeling with splines using statistical variable selection techniques , 1982 .

[18]  J. H. V. Stein,et al.  The prognosis and surveillance of risks from commercial credit borrowers , 1984 .

[19]  Stanley J. Farlow,et al.  Self-Organizing Methods in Modeling: Gmdh Type Algorithms , 1984 .

[20]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[21]  Donald Michie,et al.  A self-commenting facility for inductively synthesised endgame expertise , 1986 .

[22]  Christopher J. C. H. Watkins,et al.  Combining Cross-Validation and Search , 1987, EWSL.

[23]  V. Srinivasan,et al.  Credit Granting: A Comparative Analysis of Classification Procedures , 1987 .

[24]  Alen D. Shapiro,et al.  Structured induction in expert systems , 1987 .

[25]  Jan Paul Siebert,et al.  Vehicle Recognition Using Rule Based Methods , 1987 .

[26]  Paul Compton,et al.  Inductive knowledge acquisition: a case study , 1987 .

[27]  J. Ross Quinlan,et al.  Generating Production Rules from Decision Trees , 1987, IJCAI.

[28]  Danny A. Pearce The Induction of Fault Diagnosis Systems from Qualitative Models , 1988, AAAI.

[29]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[30]  Dean Pomerleau,et al.  ALVINN, an autonomous land vehicle in a neural network , 2015 .

[31]  Richard S. Johannes,et al.  Using the ADAP Learning Algorithm to Forecast the Onset of Diabetes Mellitus , 1988 .

[32]  Stephen Muggleton,et al.  Machine Invention of First Order Predicates by Inverting Resolution , 1988, ML.

[33]  Claude Sammut,et al.  Experimental Results from an Evaluation of Algorithms that Learn to Control Dynamic Systems , 1988, ML.

[34]  J. Piper,et al.  On fully automatic feature measurement for banded chromosome classification. , 1989, Cytometry.

[35]  S. Renals,et al.  Phoneme classification experiments using radial basis functions , 1989, International 1989 Joint Conference on Neural Networks.

[36]  Raymond J. Mooney,et al.  An Experimental Comparison of Symbolic and Connectionist Learning Algorithms , 1989, IJCAI.

[37]  Michael O. Odetayo,et al.  Genetic Algorithm for Inducing Control Rules for a Dynamic System , 1989, International Conference on Genetic Algorithms.

[38]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[39]  Richard W. Prager,et al.  The modified Kanerva model for automatic speech recognition , 1989 .

[40]  Sholom M. Weiss,et al.  An Empirical Comparison of Pattern Recognition, Neural Nets, and Machine Learning Classification Methods , 1989, IJCAI.

[41]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[42]  J. Nadal,et al.  Learning in feedforward layered networks: the tiling algorithm , 1989 .

[43]  R. Todeschini k-nearest neighbour method: The influence of data transformations and metrics , 1989 .

[44]  Philip D. Wasserman,et al.  Neural computing - theory and practice , 1989 .

[45]  Karl Johan Åström,et al.  ARTIFICIAL INTELLIGENCE AND FEEDBACK CONTROL , 1989 .

[46]  Richard Rohwer,et al.  Phoneme classification by boolean networks , 1989, EUROSPEECH.

[47]  D. Michie Personal models of rationality , 1990 .

[48]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[49]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[50]  Ishwar K. Sethi,et al.  Comparison between entropy net and decision tree classifiers , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[51]  Casimir A. Kulikowski,et al.  Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning and Expert Systems , 1990 .

[52]  Stephen Muggleton,et al.  Efficient Induction of Logic Programs , 1990, ALT.

[53]  Fionn Murtagh,et al.  Neural networks for time-varying data , 1990 .

[54]  Luís B. Almeida,et al.  Acceleration Techniques for the Backpropagation Algorithm , 1990, EURASIP Workshop.

[55]  Tom Tollenaere,et al.  SuperSAB: Fast adaptive back propagation with good scaling properties , 1990, Neural Networks.

[56]  L. Spirkovska,et al.  An empirical comparison of ID3 and HONNs for distortion invariant object recognition , 1990, [1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence.

[57]  Donald Michie,et al.  Cognitive models from subcognitive skills , 1990 .

[58]  Richard E. Neapolitan,et al.  Probabilistic reasoning in expert systems - theory and algorithms , 2012 .

[59]  Richard Rohwer,et al.  Time Trials on Second-Order and Variable-Learning-Rate Algorithms , 1990, NIPS.

[60]  Marcel Schoppers Real-time knowledge-based control systems , 1991, CACM.

[61]  Martin D. Fraser Advances in control networks and large-scale parallel distributed processing models , 1991 .

[62]  Donald Michie,et al.  Use of sequential Bayes with class probability trees , 1991 .

[63]  Chorkin Chan,et al.  A Three-Layer Adaptive Network for Pattern Density Estimation and Classification , 1991, Int. J. Neural Syst..

[64]  Robert J. Schalkoff,et al.  Pattern recognition - statistical, structural and neural approaches , 1991 .

[65]  Claude Sammut,et al.  Controlling a Black-Box Simulation of a Spacecraft , 1991, AI Mag..

[66]  Vasant Honavar,et al.  Experiments with the cascade-correlation algorithm , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[67]  R. Rohwer Description and training of neural network dynamics , 1991 .

[68]  Erkki Oja,et al.  Neural Nets for Dual Subspace Pattern Recognition Method , 1991, Int. J. Neural Syst..

[69]  A. Makarovic A qualitative way of solving the pole balancing problem , 1991 .

[70]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[71]  Nazif Tepedelenlioglu,et al.  A fast new algorithm for training feedforward neural networks , 1992, IEEE Trans. Signal Process..

[72]  Rui Camacho,et al.  Building symbolic representations of intuitive real-time skills from performance data , 1994, Machine Intelligence 13.

[73]  A. Öztürk,et al.  A new method for assessing multivariate normality with graphical applications , 1992 .

[74]  Stephen Muggleton,et al.  Logic and Learning: Turing's legacy , 1994, Machine Intelligence 13.

[75]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[76]  Claude Sammut,et al.  Recent progress with BOXES , 1994, Machine Intelligence 13.

[77]  D. Wolpert A Rigorous Investigation of “Evidence” and “Occam Factors” in Bayesian Reasoning , 1992 .

[78]  Geoffrey E. Hinton,et al.  Simplifying Neural Networks by Soft Weight-Sharing , 1992, Neural Computation.

[79]  Martin Fodslette Møller,et al.  A scaled conjugate gradient algorithm for fast supervised learning , 1993, Neural Networks.

[80]  Ivan Bratko,et al.  AUTOMATED SYNTHESIS OF CONTROL FOR NONLINEAR DYNAMIC SYSTEMS , 1993 .

[81]  Tanja Urbancic,et al.  Genetic algorithms in controller design and tuning , 1993, IEEE Trans. Syst. Man Cybern..

[82]  David J. Spiegelhalter,et al.  Bayesian analysis in expert systems , 1993 .

[83]  J. M. Renders,et al.  GENETIC ALGORITHMS FOR PROCESS CONTROL: A SURVEY , 1992 .

[84]  Donald Michie,et al.  Methodologies from Machine Learning in Data Analysis and Software , 1991, Informatica.

[85]  Eduardo D. Sontag,et al.  Neural Networks for Control , 1993 .

[86]  Ryszard S. Michalski,et al.  A theory and methodology of inductive learning , 1993 .

[87]  Brian D. Ripley,et al.  Statistical aspects of neural networks , 1993 .

[88]  Richard Scheines,et al.  TETRAD II: Tools for Discovery , 1994 .

[89]  Simon Kasif,et al.  A System for Induction of Oblique Decision Trees , 1994, J. Artif. Intell. Res..

[90]  R. Rohwer A representation of representation applied to a discussion of variable binding , 1994 .

[91]  Donald E. Brown,et al.  Induction and polynomial networks , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[92]  Vladimir Cherkassky,et al.  Statistical analysis of self-organization , 1995, Neural Networks.

[93]  Daryl Pregibon,et al.  A Statistical Perspective on Knowledge Discovery in Databases , 1996, Advances in Knowledge Discovery and Data Mining.

[94]  Turing Am Lecture to the London Mathematical Society on 20 February 1947. 1986. , 1995 .

[95]  R. Tibshirani,et al.  Generalized Additive Models , 1986 .