The Gaia-ESO survey: a lithium depletion boundary age for NGC 2232

Astrometry and photometry from Gaia and spectroscopic data from the Gaia-ESO Survey (GES) are used to identify the lithium depletion boundary (LDB) in the young cluster NGC 2232. A specialised spectral line analysis procedure was used to recover the signature of undepleted lithium in very low luminosity cluster members. An age of 38 ± 3 Myr is inferred by comparing the LDB location in absolute colour-magnitude diagrams (CMDs) with the predictions of standard models. This is more than twice the age derived from fitting isochrones to low-mass stars in the CMD with the same models. Much closer agreement between LDB and CMD ages is obtained from models that incorporate magnetically suppressed convection or flux-blocking by dark, magnetic starspots. The best agreement is found at ages of 45 − 50 Myr for models with high levels of magnetic activity and starspot coverage fractions > 50 per cent, although a uniformly high spot coverage does not match the CMD well across the full luminosity range considered.

[1]  D. Mullan,et al.  THOR 42: A Test of Magnetic Models for Pre-main-sequence Stars , 2021 .

[2]  Barcelona,et al.  The Gaia-ESO Survey: membership probabilities for stars in 32 open clusters from 3D kinematics , 2020, Monthly Notices of the Royal Astronomical Society.

[3]  Sergey E. Koposov,et al.  The Gaia-ESO survey: the non-universality of the age–chemical-clocks–metallicity relations in the Galactic disc , 2020, Astronomy & Astrophysics.

[4]  L. Testi,et al.  X-shooter survey of disk accretion in Upper Scorpius , 2020, Astronomy & Astrophysics.

[5]  M. Pinsonneault,et al.  The SPOTS Models: A Grid of Theoretical Stellar Evolution Tracks and Isochrones for Testing the Effects of Starspots on Structure and Colors , 2020, The Astrophysical Journal.

[6]  Joseph R. Biggs,et al.  Peter Pan Disks: Long-lived Accretion Disks Around Young M Stars , 2020, The Astrophysical Journal.

[7]  M. Ireland,et al.  Dynamical Masses of Young Stars. II. Young Taurus Binaries Hubble 4, FF Tau, and HP Tau/G3 , 2019, The Astrophysical Journal.

[8]  Sergey E. Koposov,et al.  The Gaia-ESO survey: Calibrating a relationship between age and the [C/N] abundance ratio with open clusters , 2019, Astronomy & Astrophysics.

[9]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[10]  V. B'ejar,et al.  The Lithium Depletion Boundary and the Age of the Hyades Cluster , 2018, 1802.07155.

[11]  Usa,et al.  The inflated radii of M-dwarfs in the Pleiades , 2018, 1802.04288.

[12]  P. Sartoretti,et al.  The empirical Gaia G-band extinction coefficient , 2018, Astronomy & Astrophysics.

[13]  S. Randich,et al.  The Gaia-ESO Survey: open clusters in Gaia-DR1 , 2017, Astronomy & Astrophysics.

[14]  I. Boisse,et al.  The lithium-rotation connection in the 125 Myr-old Pleiades cluster , 2017, 1712.06525.

[15]  K. Covey,et al.  The Factory and the Beehive. III. PTFEB132.707+19.810, A Low-mass Eclipsing Binary in Praesepe Observed by PTF and K2 , 2017, 1706.09390.

[16]  J. Walsh,et al.  A Tale of Three Cities: OmegaCAM discovers multiple sequences in the color-magnitude diagram of the Orion Nebula Cluster , 2017, 1705.09496.

[17]  A. Klutsch,et al.  The Gaia-ESO Survey: The present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters , 2017, 1702.03461.

[18]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: lithium depletion in the Gamma Velorum cluster and inflated radii in low-mass pre-main-sequence stars , 2016, Monthly Notices of the Royal Astronomical Society.

[19]  D. Mullan,et al.  APPARENT NON-COEVALITY AMONG THE STARS IN UPPER SCORPIO: RESOLVING THE PROBLEM USING A MODEL OF MAGNETIC INHIBITION OF CONVECTION , 2016, 1608.02136.

[20]  Y. B. Kumar,et al.  Stellar activity with LAMOST – I. Spot configuration in Pleiades , 2016, 1608.05452.

[21]  G. Feiden Magnetic Inhibition of Convection and the Fundamental Properties of Low-Mass Stars. III. A Consistent 10 Myr Age for the Upper Scorpius OB Association , 2016, 1604.08036.

[22]  A. Klutsch,et al.  The Gaia-ESO Survey: A lithium-rotation connection at 5 Myr? , 2016, 1604.07580.

[23]  R. Jeffries,et al.  Spectroscopic confirmation of M-dwarf candidate members of the Beta Pictoris and AB Doradus Moving Groups , 2015, 1510.06987.

[24]  C. Babusiaux,et al.  TheGaia-ESO Survey: Empirical determination of the precision of stellar radial velocities and projected rotation velocities , 2015, Astronomy & Astrophysics.

[25]  L. Hillenbrand,et al.  EMPIRICAL ISOCHRONES FOR LOW MASS STARS IN NEARBY YOUNG ASSOCIATIONS , 2015, 1505.06518.

[26]  K. Covey,et al.  THE MASS–RADIUS RELATION OF YOUNG STARS. I. USCO 5, AN M4.5 ECLIPSING BINARY IN UPPER SCORPIUS OBSERVED BY K2 , 2015, 1505.02446.

[27]  Emanuele Tognelli,et al.  Cumulative theoretical uncertainties in lithium depletion boundary age , 2015, 1504.02698.

[28]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[29]  Garrett Somers,et al.  Rotation, inflation, and lithium in the Pleiades , 2014, 1410.4238.

[30]  Gregory A. Feiden,et al.  MAGNETIC INHIBITION OF CONVECTION AND THE FUNDAMENTAL PROPERTIES OF LOW-MASS STARS. II. FULLY CONVECTIVE MAIN-SEQUENCE STARS , 2014, 1405.1767.

[31]  A. Bragaglia,et al.  Gaia-ESO Survey: Empirical classification of VLT/Giraffe stellar spectra in the wavelength range 6440–6810 Å in the γ Velorum cluster, and calibration of spectral indices , 2014, 1405.1205.

[32]  C. Babusiaux,et al.  The Gaia-ESO Survey: processing FLAMES-UVES spectra , 2014 .

[33]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Kinematic structure in the Gamma Velorum cluster , 2014, 1401.4979.

[34]  M. Schultheis,et al.  High-resolution spectroscopic atlas of M subdwarfs. Effective temperature and metallicity , 2014, 1401.2901.

[35]  R. Jeffries,et al.  A lithium depletion boundary age of 21 Myr for the Beta Pictoris moving group , 2013, 1310.2613.

[36]  José A. Gómez Hernández,et al.  Gaia FGK benchmark stars: Metallicity , 2013, 1309.1099.

[37]  G. Feiden,et al.  MAGNETIC INHIBITION OF CONVECTION AND THE FUNDAMENTAL PROPERTIES OF LOW-MASS STARS. I. STARS WITH A RADIATIVE CORE , 2013, 1309.0033.

[38]  N. Panagia,et al.  Pre-main-sequence stars older than 8 Myr in the Eagle nebula , 2013, 1307.8446.

[39]  U. Sheffield,et al.  A lithium depletion boundary age of 22 Myr for NGC 1960 , 2013, 1306.6339.

[40]  S. Littlefair,et al.  Pre-main-sequence isochrones - II. Revising star and planet formation time-scales , 2013, 1306.3237.

[41]  G. Torres Fundamental properties of lower main-sequence stars , 2012, 1209.1279.

[42]  U. Sheffield,et al.  No wide spread of stellar ages in the Orion Nebula Cluster , 2011, 1108.2052.

[43]  C. Pilachowski,et al.  METALLICITIES OF YOUNG OPEN CLUSTERS. I. NGC 7160 AND NGC 2232 , 2010, 1010.0739.

[44]  X. Delfosse,et al.  Large-scale magnetic topologies of late M dwarfs★: Magnetic topologies of late M dwarfs , 2010, 1005.5552.

[45]  G. Basri,et al.  A VOLUME-LIMITED SAMPLE OF 63 M7–M9.5 DWARFS. I. SPACE MOTION, KINEMATIC AGE, AND LITHIUM , 2009, 0909.4647.

[46]  R. Jackson,et al.  The radii of M-dwarfs in the young open cluster NGC 2516 , 2009, 0908.1406.

[47]  Tim Naylor,et al.  Are pre-main-sequence stars older than we thought? , 2009, 0907.2307.

[48]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[49]  E. Guinan,et al.  ABSOLUTE PROPERTIES OF THE LOW-MASS ECLIPSING BINARY CM DRACONIS , 2008, 0810.1541.

[50]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[51]  David R. Soderblom,et al.  The Ages of Stars , 2007, 1003.6074.

[52]  K. Luhman The Stellar Population of the Chamaeleon I Star-forming Region , 2007, 0710.3037.

[53]  Ettore Flaccomio,et al.  Old Stars in Young Clusters: Lithium-depleted Low-Mass Stars of the Orion Nebula Cluster , 2007 .

[54]  J. Alves,et al.  On the difference between nuclear and contraction ages , 2006 .

[55]  Joana M. Oliveira,et al.  The Lithium depletion boundary in NGC 2547 as a test of pre-main-sequence evolutionary models , 2004, astro-ph/0411112.

[56]  Martin G. Cohen,et al.  Constraining the Lifetime of Circumstellar Disks in the Terrestrial Planet Zone: A Mid-Infrared Survey of the 30 Myr old Tucana-Horologium Association , 2004, astro-ph/0405271.

[57]  M. Pinsonneault,et al.  Theoretical Examination of the Lithium Depletion Boundary , 2003, astro-ph/0309461.

[58]  Wm. A. Wheaton,et al.  2MASS All Sky Catalog of point sources. , 2003 .

[59]  Elizabeth A. Lada,et al.  Disk Frequencies and Lifetimes in Young Clusters , 2001, astro-ph/0104347.

[60]  L. Hillenbrand,et al.  Disk Accretion in the 10 Myr Old T Tauri Stars TW Hydrae and Hen 3-600A , 2000, The Astrophysical journal.

[61]  P. Assouad,et al.  Keck Spectra of Brown Dwarf Candidates and a Precise Determination of the Lithium Depletion Boundary in the α Persei Open Cluster , 1999, astro-ph/9909207.

[62]  J. Kirkpatrick,et al.  Keck Spectra of Pleiades Brown Dwarf Candidates and a Precise Determination of the Lithium Depletion Edge in the Pleiades , 1998, astro-ph/9804005.

[63]  L. Bildsten,et al.  Lithium Depletion in Fully Convective Pre-Main-Sequence Stars , 1996, astro-ph/9612155.

[64]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[65]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[66]  S. Baliunas,et al.  A Prescription for period analysis of unevenly sampled time series , 1986 .

[67]  D. F. Gray Measurements of Zeeman broadening in F, G, and K dwarfs , 1984 .

[68]  H. Levato,et al.  Spectroscopic study of the open cluster NGC 2232. , 1974 .

[69]  W. H. Christie,et al.  Thomas Bolton, 8 Carlton Terrace, St. Martin's Square, Scarborough; , 1888 .

[70]  J. Herschel I. Catalogue of nebulœ and clusters of stars , 1864, Philosophical Transactions of the Royal Society of London.