All-boron planar B6 ring in the solid-state phase Ti7Rh4Ir2B8.

[1]  T. Fehlner,et al.  Synthesis and characterization of hypoelectronic rhenaboranes. Analysis of the geometric and electronic structures of species following neither borane nor metal cluster electron-counting paradigms. , 2004, Journal of the American Chemical Society.

[2]  Jakoah Brgoch,et al.  Scaffolding, ladders, chains, and rare ferrimagnetism in intermetallic borides: electronic structure calculations and magnetic ordering. , 2011, Journal of the American Chemical Society.

[3]  P. Schleyer,et al.  Planar hepta-, octa-, nona-, and decacoordinate first row d-block metals enclosed by boron rings. , 2009, Inorganic chemistry.

[4]  Anastassia N. Alexandrova,et al.  All-Boron Aromatic Clusters as Potential New Inorganic Ligands and Building Blocks in Chemistry , 2006 .

[5]  M. M. Balakrishnarajan,et al.  Electronic requirements for macropolyhedral boranes. , 2002, Chemical reviews.

[6]  Ove Jepsen,et al.  Explicit, First-Principles Tight-Binding Theory , 1984 .

[7]  R. Dronskowski,et al.  Ti2Rh6B – a new boride with a double perovskite-like structure containing octahedral Rh6 clusters , 2006 .

[8]  B. Fokwa,et al.  Complete titanium substitution by boron in a tetragonal prism: exploring the complex boride series Ti(3-x)Ru(5-y)Ir(y)B(2+x) (0 ≤ x ≤ 1 and 1 < y < 3) by experiment and theory. , 2011, Inorganic chemistry.

[9]  R. Pöttgen,et al.  Crystal structure and magnetic properties of Ce7Ni5±xGe3±xIn6 and Pr7Ni5±xGe3±xIn6 , 2010 .

[10]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[11]  Richard Dronskowski,et al.  Rational synthetic tuning between itinerant antiferromagnetism and ferromagnetism in the complex boride series Sc2FeRu(5-n)RhnB2 (0, 2007, Chemistry.

[12]  F. Pourarian Review on the influence of hydrogen on the magnetism of alloys based on rare earth-transition metal systems , 2002 .

[13]  H. Skriver The LMTO Method , 1984 .

[14]  R. Dronskowski,et al.  Rational Design of Complex Borides – One-Electron-Step Evolution from Soft to Semi-Hard Itinerant Ferromagnets in the New Boride Series Ti2FeRu5–nRhnB2 (1 ≤ n ≤ 5)† , 2011 .

[15]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[16]  R. Dronskowski,et al.  Ladders of a magnetically active element in the structure of the novel complex boride Ti9Fe2Ru18B8: synthesis, structure, bonding, and magnetism. , 2008, Inorganic Chemistry.

[17]  Hans‐Jörg Himmel,et al.  Synthesis and characterization of a doubly base-stabilized B3H6+ analogue. , 2011, Angewandte Chemie.

[18]  M. Ade,et al.  B4 Tetrahedra for Aluminum Atoms-A Surprising Substitution in τ-Borides Ni20 Al3 B6 and Ni20 AlB14. , 1998, Angewandte Chemie.

[19]  H. Hillebrecht,et al.  Al‐Atome gegen B4‐Tetraeder – eine überraschende Substitutionsmöglichkeit in den τ‐Boriden Ni20Al3B6 und Ni20AlB14 , 1998 .

[20]  Alexander I Boldyrev,et al.  Aromatic metal-centered monocyclic boron rings: Co©B8- and Ru©B9-. , 2011, Angewandte Chemie.

[21]  R. King Three-dimensional aromaticity in polyhedral boranes and related molecules. , 2001, Chemical reviews.

[22]  P. R. N. Misse,et al.  Sn-flux syntheses, characterizations and bonding analyses of OsB and TiB2 , 2010 .

[23]  T. Fehlner,et al.  Synthesis and characterization of bicapped hexagonal bipyramidal 2,3-Cl(2)-1,8-[Cp*Re](2)B(6)H(4)([Cp*Re](2)[mu-eta(6):eta(6)-1,2-B(6)H(4)Cl(2)], Cp* = eta(5)-C(5)Me(5)): the missing link connecting (p - 2) skeletal electron pair hypoelectronic rhenaboranes and 24-valence electron triple-decker comp , 2001, Journal of the American Chemical Society.

[24]  I. Todorov,et al.  Heavy-metal aromatic rings: cyclopentadienyl anion analogues Sn5(6-) and Pb5(6-) in the Zintl Phases Na8BaPb6, Na8BaSn6, and Na8EuSn6. , 2004, Inorganic chemistry.

[25]  M. Ade,et al.  Synthesis and crystal structures of the new metal-rich ternary borides Ni12AlB8, Ni12GaB8 and Ni10.6Ga0.4B6-examples for the first B5 zig-zag chain fragment , 2010 .

[26]  O. K. Andersen,et al.  Linear methods in band theory , 1975 .

[27]  J. Nagamatsu,et al.  Superconductivity at 39 K in magnesium diboride , 2001, Nature.

[28]  S. Malik,et al.  Magnetic behavior of the hydrides of Th7Fe3, Th7Co3 and Th7Ni3☆ , 1980 .

[29]  B. Fokwa Transition‐Metal‐Rich Borides – Fascinating Crystal Structures and Magnetic Properties , 2010 .

[30]  Richard Dronskowski,et al.  Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations , 1993 .

[31]  Richard Dronskowski,et al.  Computational Chemistry of Solid State Materials , 2005 .

[32]  G. Miller,et al.  Scaffolding, ladders, chains, and rare ferrimagnetism in intermetallic borides: synthesis, crystal chemistry and magnetism. , 2011, Inorganic chemistry.

[33]  R. Dronskowski,et al.  New Transition-Metal Borides containing Trigonal-Planar B4-Units: Syntheses and Single-Crystal Structure Analyses of Ti1.6Os2.4B2 and Ti1–xFexOs2RhB2 (0 < x < 0.5) , 2008 .

[34]  R. Dronskowski,et al.  Synthesis of a missing structural link: the first trigonal planar B4 units in the novel complex boride Ti(1+x)Os(2-x)RuB2 (x = 0.6). , 2006, Chemical communications.

[35]  S. Malik,et al.  Hydrogen induced change from superconducting to magnetically ordered state in Th7Fe3 , 1978 .

[36]  H. Wadepohl,et al.  Synthese und Charakterisierung eines doppelt basenstabilisierten B3H6+‐Analogons , 2011 .