Mutual events in the Cold Classical transneptunian binary system Sila and Nunam

Abstract Hubble Space Telescope observations between 2001 and 2010 resolved the binary components of the Cold Classical transneptunian object (79360) Sila–Nunam (provisionally designated 1997 CS 29 ). From these observations we have determined the circular, retrograde mutual orbit of Nunam relative to Sila with a period of 12.50995 ± 0.00036 days and a semimajor axis of 2777 ± 19 km. A multi-year season of mutual events, in which the two near-equal brightness bodies alternate in passing in front of one another as seen from Earth, is in progress right now, and on 2011 February 1 UT, one such event was observed from two different telescopes. The mutual event season offers a rich opportunity to learn much more about this barely-resolvable binary system, potentially including component sizes, colors, shapes, and albedo patterns. The low eccentricity of the orbit and a photometric lightcurve that appears to coincide with the orbital period are consistent with a system that is tidally locked and synchronized, like the Pluto–Charon system. The orbital period and semimajor axis imply a system mass of (10.84 ± 0.22) × 10 18  kg, which can be combined with a size estimate based on Spitzer and Herschel thermal infrared observations to infer an average bulk density of 0.72 - 0.23 + 0.37 g cm - 3 , comparable to the very low bulk densities estimated for small transneptunian binaries of other dynamical classes.

[1]  David L. Rabinowitz,et al.  Photometric Observations Constraining the Size, Shape, and Albedo of 2003 EL61, a Rapidly Rotating, Pluto-sized Object in the Kuiper Belt , 2006 .

[2]  J. Ortiz,et al.  Photometric Lightcurves of Transneptunian Objects and Centaurs: Rotations, Shapes, and Densities , 2008 .

[3]  B. G. Marsden,et al.  Nomenclature in the Outer Solar System , 2008 .

[4]  David J. Tholen,et al.  THE ORBIT OF CHARON IS CIRCULAR , 2012 .

[5]  A. Doressoundiram,et al.  "TNOs are Cool": A survey of the trans-Neptunian region I. Results from the Herschel science demonstration phase (SDP) , 2010, 1005.2923.

[6]  J. R. Spencer,et al.  (42355) Typhon–Echidna: Scheduling observations for binary orbit determination , 2008 .

[7]  D. Hamilton,et al.  Orbital resonances in the inner neptunian system. II. Resonant history of Proteus, Larissa, Galatea, and Despina , 2008 .

[8]  David E. Trilling,et al.  The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population , 2005 .

[9]  D. Hamilton,et al.  Orbital resonances in the inner neptunian system: I. The 2:1 Proteus–Larissa mean-motion resonance , 2007 .

[10]  E. Dalessandro,et al.  THE BINARY FRACTION IN THE GLOBULAR CLUSTER M10 (NGC 6254): COMPARING CORE AND OUTER REGIONS , 2011, 1108.5675.

[11]  E. Schaller,et al.  The Mass of Dwarf Planet Eris , 2007, Science.

[12]  Marc W. Buie,et al.  Separate Lightcurves of Pluto and Charon , 1997 .

[13]  Joseph A. Burns,et al.  Orbital Evolution of , 1978 .

[14]  I. A. Steele,et al.  A Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation , 2011, Nature.

[15]  P. Lacerda A CHANGE IN THE LIGHT CURVE OF KUIPER BELT CONTACT BINARY (139775) 2001 QG298 , 2011, 1107.3507.

[16]  Joel Parker,et al.  CHARACTERIZATION OF SEVEN ULTRA-WIDE TRANS-NEPTUNIAN BINARIES , 2011, 1108.2505.

[17]  J. Spencer,et al.  Ground-based observations of time variability in multiple active volcanoes on Io , 2010 .

[18]  M. W. Buie,et al.  The correlated colors of transneptunian binaries , 2009 .

[19]  Jean-Luc Margot,et al.  Binaries in the Kuiper Belt , 2007, astro-ph/0703134.

[20]  Extreme Kuiper Belt Object 2001 QG298 and the Fraction of Contact Binaries , 2004, astro-ph/0402277.

[21]  R. Rand,et al.  Synchronous Locking of Tidally Evolving Satellites , 1996 .

[22]  E. Chiang,et al.  High albedos of low inclination Classical Kuiper belt objects , 2008, 0812.4290.

[23]  B. Schaefer,et al.  THE DIVERSE SOLAR PHASE CURVES OF DISTANT ICY BODIES II. THE CAUSE OF THE OPPOSITION SURGES AND THEIR CORRELATIONS , 2008, 0810.0965.

[24]  Harold F. Levison,et al.  Evidence for two populations of classical transneptunian objects : The strong inclination dependence of classical binaries , 2007, 0711.1545.

[25]  H. F. Levison,et al.  (47171) 1999 TC36, A transneptunian triple , 2009 .

[26]  Marc William Buie,et al.  Physical properties of trans-neptunian binaries (120347) Salacia-Actaea and (42355) Typhon-Echidna , 2012 .

[27]  F. Henry,et al.  “TNOs are Cool”: A survey of the trans-Neptunian region , 2010, Astronomy & Astrophysics.

[28]  M. W. Buie,et al.  Five New and Three Improved Mutual Orbits of Transneptunian Binaries , 2011 .

[29]  J. Krist The Tiny Tim User’s Guide , 2004 .

[30]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.

[31]  Joel Wm. Parker,et al.  THE CANADA–FRANCE ECLIPTIC PLANE SURVEY—L3 DATA RELEASE: THE ORBITAL STRUCTURE OF THE KUIPER BELT , 2009, 1108.4836.

[32]  Stephen C. Tegler,et al.  Color Patterns in the Kuiper Belt: A Possible Primordial Origin , 2003 .

[33]  M. E. Brown,et al.  The Size Distribution of Trans-Neptunian Bodies* , 2004 .

[34]  D. Jewitt,et al.  COLOR–INCLINATION RELATION OF THE CLASSICAL KUIPER BELT OBJECTS , 2008, 0808.3025.

[35]  Chadwick A. Trujillo,et al.  A Correlation between Inclination and Color in the Classical Kuiper Belt , 2002, astro-ph/0201040.

[36]  H. Bischof,et al.  The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory , 2010, 1005.1487.

[37]  E. Chiang,et al.  High albedos of low inclination Classical Kuiper belt objects , 2008, 0812.4290.

[38]  The Diverse Solar Phase Curves of Distant Icy Bodies. I. Photometric Observations of 18 Trans-Neptunian Objects, 7 Centaurs, and Nereid , 2006, astro-ph/0605745.

[39]  Megan E. Schwamb,et al.  The luminosity function of the hot and cold Kuiper belt populations , 2010, 1008.1058.

[40]  Harold F. Levison,et al.  Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune , 2007, 0712.0553.

[41]  D. Tholen,et al.  Compositional Surface Diversity in the Trans-Neptunian Objects , 2000 .

[42]  W. Grundy,et al.  Diverse albedos of small trans-neptunian objects , 2005, astro-ph/0502229.

[43]  M. Polińska,et al.  Figure of the double Asteroid 90 Antiope from adaptive optics and lightcurve observations , 2007 .

[44]  JOHN S. Lewis,et al.  Mass-radius relationships in icy satellites , 1979 .

[45]  Joseph A. Burns,et al.  Orbital stability zones about asteroids: II. The destabilizing effects of eccentric orbits and of solar radiation , 1992 .

[46]  Michael E. Brown The Inclination Distribution of the Kuiper Belt , 2001 .

[47]  David Trilling,et al.  Physical Properties of Kuiper Belt and Centaur Objects: Constraints from the Spitzer Space Telescope , 2007 .

[48]  D. Trilling,et al.  UNBIASED INCLINATION DISTRIBUTIONS FOR OBJECTS IN THE KUIPER BELT , 2009, 1005.1719.

[49]  K. Noll,et al.  Detection of Six Trans-Neptunian Binaries with NICMOS: A High Fraction of Binaries in the Cold Classical Disk , 2005, astro-ph/0510130.

[50]  J. Ortiz,et al.  Short-term variability of a sample of 29 trans-Neptunian objects and Centaurs , 2010, 1004.4841.

[51]  K. S. Noll,et al.  Detection of Six Transneptunian Binaries with NICMOS: A High Fraction of Binaries in the Cold Classical Disk , 2005 .

[52]  Richard P. Binzel,et al.  Mutual Events and Stellar Occultations , 1997 .

[53]  The color of the Kuiper belt Core , 2004 .

[54]  M. W. Buie,et al.  Mutual orbits and masses of six transneptunian binaries , 2009 .

[55]  Nicolas Thomas,et al.  TNOs are Cool: A Survey of the Transneptunian Region , 2008, Astronomy & Astrophysics.

[56]  W. Grundy,et al.  Near-Infrared Spectrum of Low-Inclination Classical Kuiper Belt Object (79360) 1997 CS29 , 2005 .

[57]  Cesar I. Fuentes,et al.  A SUBARU ARCHIVAL SEARCH FOR FAINT TRANS-NEPTUNIAN OBJECTS , 2008 .

[58]  W. Fraser,et al.  QUAOAR: A ROCK IN THE KUIPER BELT , 2009, 1003.5911.

[59]  M. W. Buie,et al.  Orbits and Photometry of Pluto’s Satellites: Charon, S/2005 P1, and S/2005 P2 , 2005, astro-ph/0512491.