Multi-Resolution 3D Convolutional Neural Networks for Object Recognition

Learning from 3D Data is a fascinating idea which is well explored and studied in computer vision. This allows one to learn from very sparse LiDAR data, point cloud data as well as 3D objects in terms of CAD models and surfaces etc. Most of the approaches to learn from such data are limited to uniform 3D volume occupancy grids or octree representations. A major challenge in learning from 3D data is that one needs to define a proper resolution to represent it in a voxel grid and this becomes a bottleneck for the learning algorithms. Specifically, while we focus on learning from 3D data, a fine resolution is very important to capture key features in the object and at the same time the data becomes sparser as the resolution becomes finer. There are numerous applications in computer vision where a multi-resolution representation is used instead of a uniform grid representation in order to make the applications memory efficient. Though such methods are difficult to learn from, they are much more efficient in representing 3D data. In this paper, we explore the challenges in learning from such data representation. In particular, we use a multi-level voxel representation where we define a coarse voxel grid that contains information of important voxels(boundary voxels) and multiple fine voxel grids corresponding to each significant voxel of the coarse grid. A multi-level voxel representation can capture important features in the 3D data in a memory efficient way in comparison to an octree representation. Consequently, learning from a 3D object with high resolution, which is paramount in feature recognition, is made efficient.

[1]  Adarsh Krishnamurthy,et al.  Learning localized features in 3D CAD models for manufacturability analysis of drilled holes , 2018, Comput. Aided Geom. Des..

[2]  Thomas Brox,et al.  Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[3]  Yasuyuki Matsushita,et al.  RotationNet: Joint Object Categorization and Pose Estimation Using Multiviews from Unsupervised Viewpoints , 2016, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[4]  Leonidas J. Guibas,et al.  Volumetric and Multi-view CNNs for Object Classification on 3D Data , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Theodore Lim,et al.  Generative and Discriminative Voxel Modeling with Convolutional Neural Networks , 2016, ArXiv.

[6]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[7]  Jiaxin Li,et al.  SO-Net: Self-Organizing Network for Point Cloud Analysis , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[8]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[9]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[10]  Gernot Riegler,et al.  OctNet: Learning Deep 3D Representations at High Resolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Guy E. Blelloch,et al.  Prefix sums and their applications , 1990 .

[12]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Ioannis Pratikakis,et al.  Ensemble of PANORAMA-based convolutional neural networks for 3D model classification and retrieval , 2017, Comput. Graph..

[14]  Yiannis Kompatsiaris,et al.  Deep Learning Advances in Computer Vision with 3D Data , 2017, ACM Comput. Surv..

[15]  Jiajun Wu,et al.  Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling , 2016, NIPS.

[16]  Subhransu Maji,et al.  Multi-view Convolutional Neural Networks for 3D Shape Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).