Assessment of a Silicon Quantum Dot Spin Qubit Environment via Noise Spectroscopy

Preserving coherence long enough to perform meaningful calculations is one of the major challenges on the pathway to large scale quantum computer implementations. Noise coupled from the environment is the main contributing factor to decoherence but can be mitigated via engineering design and control solutions. However, this is only possible after acquiring a thorough understanding of the dominant noise sources and their spectrum. In this paper, we employ a silicon quantum dot spin qubit as a metrological device to study the noise environment experienced by the qubit. We compare the sensitivity of this qubit to electrical noise with that of an implanted phosphorus donor in silicon qubit in the same environment and measurement set-up. Our results show that, as expected, a quantum dot spin qubit is more sensitive to electrical noise than a donor spin qubit due to the larger Stark shift, and the noise spectroscopy data shows pronounced charge noise contributions at intermediate frequencies (2-20 kHz).

[1]  H. Huebl,et al.  Observation of the single-electron regime in a highly tunable silicon quantum dot , 2009, 0910.0576.

[2]  A. Dzurak,et al.  Gate-defined quantum dots in intrinsic silicon. , 2007, Nano letters.

[3]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[4]  Gerhard Klimeck,et al.  Interface-induced spin-orbit interaction in silicon quantum dots and prospects for scalability , 2017, Physical Review B.

[5]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[6]  Jacob M. Taylor,et al.  Resonantly driven CNOT gate for electron spins , 2018, Science.

[7]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[8]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[9]  K. Itoh,et al.  A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% , 2018, Nature Nanotechnology.

[10]  E. Hahn,et al.  Spin Echoes , 2011 .

[11]  N F Ramsey Experiments with separated oscillatory fields and hydrogen masers. , 1990, Science.

[12]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[13]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[14]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[15]  Michelle Y. Simmons,et al.  A surface code quantum computer in silicon , 2015, Science Advances.

[16]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[17]  M. Markham,et al.  Spectroscopy of surface-induced noise using shallow spins in diamond. , 2014, Physical review letters.

[18]  J. R. Petta,et al.  Quantum CNOT Gate for Spins in Silicon [1] , 2017 .

[19]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[20]  Shinichi Tojo,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[21]  Andrew G. Glen,et al.  APPL , 2001 .

[22]  N. Davidson,et al.  Dynamic decoupling in the presence of colored control noise , 2013, 1303.2045.

[23]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[24]  P. Kam,et al.  : 4 , 1898, You Can Cross the Massacre on Foot.

[25]  A. Gossard,et al.  Scaling of dynamical decoupling for spin qubits. , 2011, Physical review letters.

[26]  M Steffen,et al.  Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.

[27]  A. Doherty,et al.  Dynamical decoupling sequence construction as a filter-design problem , 2010, 1012.4262.

[28]  A. Dzurak,et al.  Charge offset stability in Si single electron devices with Al gates , 2014, Nanotechnology.

[29]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[30]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[31]  Adele E. Schmitz,et al.  Isotopically enhanced triple-quantum-dot qubit , 2015, Science Advances.

[32]  D. Culcer,et al.  Charge noise, spin-orbit coupling, and dephasing of single-spin qubits , 2014 .

[33]  Andrew S. Dzurak,et al.  Fidelity benchmarks for two-qubit gates in silicon , 2018, Nature.

[34]  S. Tarucha,et al.  A>99.9%-fidelity quantum-dot spin qubit with coherence limited by charge noise , 2017, 1708.01454.

[35]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[36]  Y. Hirayama,et al.  Measurement of the noise spectrum using a multiple-pulse sequence. , 2011, Physical review letters.

[37]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[38]  L. Hollenberg,et al.  Single-shot readout of an electron spin in silicon , 2010, Nature.

[39]  Dieter Suter,et al.  Measuring the spectrum of colored noise by dynamical decoupling. , 2011, Physical review letters.

[40]  Andrew S. Dzurak,et al.  Logical Qubit in a Linear Array of Semiconductor Quantum Dots , 2016, Physical Review X.

[41]  Gerhard Klimeck,et al.  Electrically controlling single-spin qubits in a continuous microwave field , 2015, Science Advances.

[42]  M. Veldhorst,et al.  Impact of g -factors and valleys on spin qubits in a silicon double quantum dot , 2016, 1608.07748.

[43]  Xuedong Hu,et al.  Electron Spin Relaxation due to Charge Noise , 2013, 1308.0352.

[44]  Peter Maunz,et al.  Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography , 2016, Nature Communications.

[45]  Isotope engineering of silicon and diamond for quantum computing and sensing applications , 2014, 1410.3922.

[46]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[47]  G. Falci,et al.  1 / f noise: Implications for solid-state quantum information , 2013, 1304.7925.