Assessment of a Silicon Quantum Dot Spin Qubit Environment via Noise Spectroscopy
暂无分享,去创建一个
A. Morello | B. Hensen | K. Itoh | C. Yang | J. C. Hwang | A. Laucht | F. Hudson | A. Morello | A. Dzurak | K. W. Chan | T. Tanttu | W. Huang | C. H. Yang | B. Hensen | J. C. C. Hwang | A. S. Dzurak | F. E. Hudson | A. Laucht | K. M. Itoh | T. Tanttu | K. Chan | W. Huang
[1] H. Huebl,et al. Observation of the single-electron regime in a highly tunable silicon quantum dot , 2009, 0910.0576.
[2] A. Dzurak,et al. Gate-defined quantum dots in intrinsic silicon. , 2007, Nano letters.
[3] E. Purcell,et al. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .
[4] Gerhard Klimeck,et al. Interface-induced spin-orbit interaction in silicon quantum dots and prospects for scalability , 2017, Physical Review B.
[5] S. Meiboom,et al. Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .
[6] Jacob M. Taylor,et al. Resonantly driven CNOT gate for electron spins , 2018, Science.
[7] D. DiVincenzo,et al. Quantum computation with quantum dots , 1997, cond-mat/9701055.
[8] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[9] K. Itoh,et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% , 2018, Nature Nanotechnology.
[10] E. Hahn,et al. Spin Echoes , 2011 .
[11] N F Ramsey. Experiments with separated oscillatory fields and hydrogen masers. , 1990, Science.
[12] Tsuyoshi Murata,et al. {m , 1934, ACML.
[13] E. Knill,et al. Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.
[14] D. Cory,et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .
[15] Michelle Y. Simmons,et al. A surface code quantum computer in silicon , 2015, Science Advances.
[16] D. E. Savage,et al. A programmable two-qubit quantum processor in silicon , 2017, Nature.
[17] M. Markham,et al. Spectroscopy of surface-induced noise using shallow spins in diamond. , 2014, Physical review letters.
[18] J. R. Petta,et al. Quantum CNOT Gate for Spins in Silicon [1] , 2017 .
[19] J. P. Dehollain,et al. A two-qubit logic gate in silicon , 2014, Nature.
[20] Shinichi Tojo,et al. Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.
[21] Andrew G. Glen,et al. APPL , 2001 .
[22] N. Davidson,et al. Dynamic decoupling in the presence of colored control noise , 2013, 1303.2045.
[23] J. P. Dehollain,et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.
[24] P. Kam,et al. : 4 , 1898, You Can Cross the Massacre on Foot.
[25] A. Gossard,et al. Scaling of dynamical decoupling for spin qubits. , 2011, Physical review letters.
[26] M Steffen,et al. Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.
[27] A. Doherty,et al. Dynamical decoupling sequence construction as a filter-design problem , 2010, 1012.4262.
[28] A. Dzurak,et al. Charge offset stability in Si single electron devices with Al gates , 2014, Nanotechnology.
[29] Antonio-José Almeida,et al. NAT , 2019, Springer Reference Medizin.
[30] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[31] Adele E. Schmitz,et al. Isotopically enhanced triple-quantum-dot qubit , 2015, Science Advances.
[32] D. Culcer,et al. Charge noise, spin-orbit coupling, and dephasing of single-spin qubits , 2014 .
[33] Andrew S. Dzurak,et al. Fidelity benchmarks for two-qubit gates in silicon , 2018, Nature.
[34] S. Tarucha,et al. A>99.9%-fidelity quantum-dot spin qubit with coherence limited by charge noise , 2017, 1708.01454.
[35] J. P. Dehollain,et al. Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.
[36] Y. Hirayama,et al. Measurement of the noise spectrum using a multiple-pulse sequence. , 2011, Physical review letters.
[37] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[38] L. Hollenberg,et al. Single-shot readout of an electron spin in silicon , 2010, Nature.
[39] Dieter Suter,et al. Measuring the spectrum of colored noise by dynamical decoupling. , 2011, Physical review letters.
[40] Andrew S. Dzurak,et al. Logical Qubit in a Linear Array of Semiconductor Quantum Dots , 2016, Physical Review X.
[41] Gerhard Klimeck,et al. Electrically controlling single-spin qubits in a continuous microwave field , 2015, Science Advances.
[42] M. Veldhorst,et al. Impact of g -factors and valleys on spin qubits in a silicon double quantum dot , 2016, 1608.07748.
[43] Xuedong Hu,et al. Electron Spin Relaxation due to Charge Noise , 2013, 1308.0352.
[44] Peter Maunz,et al. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography , 2016, Nature Communications.
[45] Isotope engineering of silicon and diamond for quantum computing and sensing applications , 2014, 1410.3922.
[46] L. Vandersypen,et al. Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.
[47] G. Falci,et al. 1 / f noise: Implications for solid-state quantum information , 2013, 1304.7925.