High-contrast planet imager for Kyoto 4m segmented telescope

We propose a new high contrast imager for Kyoto 4m segmented telescope called SEICA (Second-generation Exoplanet Imager with Coronagraphic Adaptive optics), aiming at detection and characterization of selfluminous gas giants within 10AU around nearby stars. SEICA is aggressively optimized for high performance at very small inner working angle, 10-6 detection contrast at 0".1 in 1-hour integration. We start the on-sky commissioning test in 2016 and the science observations in 2017. Since it is the first time to realize the highcontrast imaging on the segmented telescope, SEICA is an important step toward future high contrast sciences on Extremely Large Telescopes (ELTs). This paper presents an overall of the SEICA program and the conceptual design for ultimate performance under given atmospheric conditions.

[1]  Naoshi Baba,et al.  Common-path lateral-shearing nulling interferometry with a Savart plate for exoplanet detection. , 2010, Optics letters.

[2]  Anne-Marie Lagrange,et al.  NAOS-CONICA first on sky results in a variety of observing modes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[3]  Olivier Guyon,et al.  Commissioning status of Subaru laser guide star adaptive optics system , 2010, Astronomical Telescopes + Instrumentation.

[4]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[5]  C. A. Grady,et al.  DIRECT IMAGING OF A COLD JOVIAN EXOPLANET IN ORBIT AROUND THE SUN-LIKE STAR GJ 504 , 2013, 1307.2886.

[6]  R. N. Smartt,et al.  Theory and Application of Point-Diffraction Interferometers , 1975 .

[7]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[8]  Christophe Verinaud,et al.  On the nature of the measurements provided by a pyramid wave-front sensor , 2004 .

[9]  G Rousset,et al.  High-order adaptive optics requirements for direct detection of extrasolar planets: Application to the SPHERE instrument. , 2006, Optics express.

[10]  O. Guyon LIMITS OF ADAPTIVE OPTICS FOR HIGH-CONTRAST IMAGING , 2005, astro-ph/0505086.

[11]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[12]  Andrew Serio,et al.  The Gemini Planet Imager: First Light , 2014, 1403.7520.

[13]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[14]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[15]  G. Perrin,et al.  High dynamic range imaging by pupil single‐mode filtering and remapping , 2006 .

[16]  Andrew W. Serio,et al.  First light of the Gemini Planet Imager , 2014, Proceedings of the National Academy of Sciences.

[17]  Kjetil Dohlen,et al.  EPICS: direct imaging of exoplanets with the E-ELT , 2010, Astronomical Telescopes + Instrumentation.

[18]  Michael Shao,et al.  Optical Planet Discoverer: how to turn a 1.5-m class space telescope into a powerful exo-planetary systems imager , 2003, SPIE Astronomical Telescopes + Instrumentation.

[19]  R. Galicher,et al.  Wavefront error correction and Earth-like planet detection by a self-coherent camera in space , 2008, 0807.2467.

[20]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[21]  R. Bracewell Detecting nonsolar planets by spinning infrared interferometer , 1978, Nature.

[22]  A. Boccaletti,et al.  A Giant Planet Imaged in the Disk of the Young Star β Pictoris , 2010, Science.

[23]  Mitchell Troy,et al.  Planet Formation Instrument for the Thirty Meter Telescope , 2006 .

[24]  Gautam Vasisht,et al.  Project 1640: the world's first ExAO coronagraphic hyperspectral imager for comparative planetary science , 2012, Other Conferences.

[25]  Bruce Bumble,et al.  A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics. , 2012, Optics express.

[26]  Taro Matsuo,et al.  Laboratory demonstration of the Savart-plate lateral-shearing interferometric nuller for exoplanets (SPLINE) , 2014, Astronomical Telescopes and Instrumentation.

[27]  Shane Jacobson,et al.  Concept and science of HiCIAO: high contrast instrument for the Subaru next generation adaptive optics , 2006, SPIE Astronomical Telescopes + Instrumentation.

[28]  D. Mawet,et al.  RING-APODIZED VORTEX CORONAGRAPHS FOR OBSCURED TELESCOPES. I. TRANSMISSIVE RING APODIZERS , 2013, 1309.3328.

[29]  Gert Finger,et al.  Evaluation and optimization of NIR HgCdTe avalanche photodiode arrays for adaptive optics and interferometry , 2012, Other Conferences.

[30]  M. G. Lattanzi,et al.  Double-blind test program for astrometric planet detection with Gaia , 2008, 0802.0515.

[31]  Taro Matsuo,et al.  Second-earth imager for TMT (SEIT): a proposal and concept Description , 2010, Astronomical Telescopes + Instrumentation.

[32]  Gautam Vasisht,et al.  A first order wavefront estimation algorithm for P1640 calibrator , 2012, Other Conferences.

[33]  R. Soummer,et al.  HIGH PERFORMANCE PIAA CORONAGRAPHY WITH COMPLEX AMPLITUDE FOCAL PLANE MASKS , 2010 .

[34]  Taro Matsuo,et al.  Second-Earth imager for TMT (SEIT): concept and its numerical simulation , 2012, Other Conferences.

[35]  Olivier Guyon,et al.  CAN GROUND-BASED TELESCOPES DETECT THE OXYGEN 1.27 μm ABSORPTION FEATURE AS A BIOMARKER IN EXOPLANETS? , 2012, 1206.0558.

[36]  R. Ragazzoni Pupil plane wavefront sensing with an oscillating prism , 1996 .