Structural Differences between the Streptococcus agalactiae Housekeeping and Pilus-Specific Sortases: SrtA and SrtC1

The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a ‘lid’ in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the ‘lid’ mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis.

[1]  S. Narayana,et al.  A model for group B Streptococcus pilus type 1: the structure of a 35-kDa C-terminal fragment of the major pilin GBS80. , 2011, Journal of molecular biology.

[2]  Karina Persson Structure of the sortase AcSrtC-1 from Actinomyces oris. , 2011, Acta crystallographica. Section D, Biological crystallography.

[3]  E. Baker,et al.  Crystal Structure of Spy0129, a Streptococcus pyogenes Class B Sortase Involved in Pilus Assembly , 2011, PloS one.

[4]  S. Narayana,et al.  Preliminary crystallographic study of the Streptococcus agalactiae sortases, sortase A and sortase C1. , 2010 .

[5]  S. Hultgren,et al.  A tale of two pili: assembly and function of pili in bacteria. , 2010, Trends in microbiology.

[6]  Alexei Vagin,et al.  Molecular replacement with MOLREP. , 2010, Acta crystallographica. Section D, Biological crystallography.

[7]  A. D. Di Guilmi,et al.  Sortase activity is controlled by a flexible lid in the pilus biogenesis mechanism of gram-positive pathogens. , 2009, Biochemistry.

[8]  G. Waksman,et al.  Structural biology of the chaperone–usher pathway of pilus biogenesis , 2009, Nature Reviews Microbiology.

[9]  S. Normark,et al.  Two crystal structures of pneumococcal pilus sortase C provide novel insights into catalysis and substrate specificity. , 2009, Journal of molecular biology.

[10]  E. A. Fadeev,et al.  The Structure of the Staphylococcus aureus Sortase-Substrate Complex Reveals How the Universally Conserved LPXTG Sorting Signal Is Recognized* , 2009, The Journal of Biological Chemistry.

[11]  R. Sessions,et al.  Crystal Structure of Streptococcus pyogenes Sortase A , 2009, Journal of Biological Chemistry.

[12]  I. Margarit,et al.  Preventing bacterial infections with pilus-based vaccines: the group B streptococcus paradigm. , 2009, The Journal of infectious diseases.

[13]  E. Baker,et al.  Pili in Gram-negative and Gram-positive bacteria — structure, assembly and their role in disease , 2009, Cellular and Molecular Life Sciences.

[14]  O. Schneewind,et al.  Cell Wall Anchor Structure of BcpA Pili in Bacillus anthracis* , 2008, Journal of Biological Chemistry.

[15]  Guy Schoehn,et al.  Sortase-mediated pilus fiber biogenesis in Streptococcus pneumoniae. , 2008, Structure.

[16]  S. Normark,et al.  Sortase-mediated assembly and surface topology of adhesive pneumococcal pili , 2008, Molecular microbiology.

[17]  Anjali Mandlik,et al.  The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria , 2008, Proceedings of the National Academy of Sciences.

[18]  A. Camilli,et al.  Roles of the Sortases of Streptococcus pneumoniae in Assembly of the RlrA Pilus , 2008, Journal of bacteriology.

[19]  G. Grandi,et al.  Sortase A Utilizes an Ancillary Protein Anchor for Efficient Cell Wall Anchoring of Pili in Streptococcus agalactiae , 2008, Infection and Immunity.

[20]  C. Donati,et al.  A Second Pilus Type in Streptococcus pneumoniae Is Prevalent in Emerging Serotypes and Mediates Adhesion to Host Cells , 2008, Journal of bacteriology.

[21]  A. Norrby-Teglund,et al.  Invasive Group B Streptococcal Disease in Non-pregnant Adults , 2008, Infection.

[22]  Anjali Mandlik,et al.  Housekeeping sortase facilitates the cell wall anchoring of pilus polymers in Corynebacterium diphtheriae , 2007, Molecular microbiology.

[23]  S. Narayana,et al.  An IgG-like domain in the minor pilin GBS52 of Streptococcus agalactiae mediates lung epithelial cell adhesion. , 2007, Structure.

[24]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[25]  M. Fitzgerald,et al.  Mutational analysis of active site residues in the Staphylococcus aureus transpeptidase SrtA. , 2007, Biochemistry.

[26]  D. McCafferty,et al.  Engineering the Substrate Specificity of Staphylococcus aureus Sortase A , 2007, Journal of Biological Chemistry.

[27]  Asis Das,et al.  Sortase-Catalyzed Assembly of Distinct Heteromeric Fimbriae in Actinomyces naeslundii , 2007, Journal of bacteriology.

[28]  D. Zähner,et al.  Pili with strong attachments: Gram‐positive bacteria do it differently , 2006, Molecular microbiology.

[29]  I. Margarit,et al.  Identification of novel genomic islands coding for antigenic pilus‐like structures in Streptococcus agalactiae , 2006, Molecular microbiology.

[30]  Rino Rappuoli,et al.  Pili in Gram-positive pathogens , 2006, Nature Reviews Microbiology.

[31]  S. Radford,et al.  Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted beta strand displacement mechanism. , 2006, Molecular cell.

[32]  S. Guadagnini,et al.  Assembly and role of pili in group B streptococci , 2006, Molecular microbiology.

[33]  A. Birve,et al.  Sequence analyses of fimbriae subunit FimA proteins on Actinomyces naeslundii genospecies 1 and 2 and Actinomyces odontolyticus with variant carbohydrate binding specificities , 2006, BMC Microbiology.

[34]  A. Camilli,et al.  RrgA and RrgB Are Components of a Multisubunit Pilus Encoded by the Streptococcus pneumoniae rlrA Pathogenicity Islet , 2006, Infection and Immunity.

[35]  H. Ton-That,et al.  Assembly of Distinct Pilus Structures on the Surface of Corynebacterium diphtheriae , 2006, Journal of bacteriology.

[36]  M. T. Naik,et al.  Staphylococcus aureus Sortase A Transpeptidase , 2006, Journal of Biological Chemistry.

[37]  G. Bensi,et al.  Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  W. Maret Zinc coordination environments in proteins determine zinc functions. , 2005, Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements.

[39]  P. Adams,et al.  Electronic Reprint Biological Crystallography a Robust Bulk-solvent Correction and Anisotropic Scaling Procedure Afonine Et Al. ¯ Bulk-solvent Correction and Anisotropic Scaling Biological Crystallography a Robust Bulk-solvent Correction and Anisotropic Scaling Procedure , 2004 .

[40]  R. Rappuoli,et al.  Genome Analysis Reveals Pili in Group B Streptococcus , 2005, Science.

[41]  H. Tettelin,et al.  Identification of a Universal Group B Streptococcus Vaccine by Multiple Genome Screen , 2005, Science.

[42]  S. Dramsi,et al.  Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria. , 2005, Research in microbiology.

[43]  William,et al.  STAPHYLOCOCCUS AUREUS SORTASE A TRANSPEPTIDASE: CALCIUM PROMOTES SORTING SIGNAL BINDING BY ALTERING THE MOBILITY AND STRUCTURE OF AN ACTIVE SITE LOOP , 2005 .

[44]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[45]  J. Eggert,et al.  A history of neonatal group B streptococcus with its related morbidity and mortality rates in the United States. , 2004, Journal of pediatric nursing.

[46]  S. Narayana,et al.  Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus , 2004, Journal of Biological Chemistry.

[47]  R. Clubb,et al.  Localization and mutagenesis of the sorting signal binding site on sortase A from Staphylococcus aureus , 2004, FEBS letters.

[48]  S. Narayana,et al.  Crystal Structures of Staphylococcus aureus Sortase A and Its Substrate Complex* , 2004, Journal of Biological Chemistry.

[49]  A. Joachimiak,et al.  Structures of sortase B from Staphylococcus aureus and Bacillus anthracis reveal catalytic amino acid triad in the active site. , 2004, Structure.

[50]  R. Clubb,et al.  A Comparative Genome Analysis Identifies Distinct Sorting Pathways in Gram-Positive Bacteria , 2004, Infection and Immunity.

[51]  O. Schneewind,et al.  Assembly of pili in Gram-positive bacteria. , 2004, Trends in microbiology.

[52]  S. Narayana,et al.  The structure of sortase B, a cysteine transpeptidase that tethers surface protein to the Staphylococcus aureus cell wall. , 2004, Structure.

[53]  T. Mitchell,et al.  The biology of Gram-positive sortase enzymes. , 2004, Trends in microbiology.

[54]  D. Auld Zinc coordination sphere in biochemical zinc sites , 2001, Biometals.

[55]  O. Schneewind,et al.  Assembly of pili on the surface of Corynebacterium diphtheriae , 2003, Molecular microbiology.

[56]  Peter Briggs,et al.  A graphical user interface to the CCP4 program suite. , 2003, Acta crystallographica. Section D, Biological crystallography.

[57]  Z. Otwinowski,et al.  Multiparametric scaling of diffraction intensities. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[58]  Martyn D Winn,et al.  Macromolecular TLS refinement in REFMAC at moderate resolutions. , 2003, Methods in enzymology.

[59]  S. Mazmanian,et al.  Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus , 2002, The Journal of Biological Chemistry.

[60]  M. Pallen,et al.  An embarrassment of sortases - a richness of substrates? , 2001, Trends in microbiology.

[61]  S. Mazmanian,et al.  Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[62]  S. Mazmanian,et al.  Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus , 2000, The Journal of Biological Chemistry.

[63]  S. Hultgren,et al.  Bacterial pili: molecular mechanisms of pathogenesis. , 2000, Current opinion in microbiology.

[64]  A. Schuchat,et al.  Group B streptococcal disease in the era of intrapartum antibiotic prophylaxis. , 2000, The New England journal of medicine.

[65]  S. Mazmanian,et al.  Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[66]  William Wiley Navarre,et al.  Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope , 1999, Microbiology and Molecular Biology Reviews.

[67]  O. Schneewind,et al.  Anchor Structure of Staphylococcal Surface Proteins , 1998, The Journal of Biological Chemistry.

[68]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[69]  A. Schuchat Epidemiology of Group B Streptococcal Disease in the United States: Shifting Paradigms , 1998, Clinical Microbiology Reviews.

[70]  G. Sheldrick,et al.  SHELXL: high-resolution refinement. , 1997, Methods in enzymology.

[71]  O. Schneewind,et al.  Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram‐positive bacteria , 1994, Molecular microbiology.

[72]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.